
Visualisation and Software to Communicate
Data Preprocessing Decisions

Lydia R. Lucchesi

May 2024

A thesis submitted for the degree of
Doctor of Philosophy

of The Australian National University.

© Copyright by Lydia R. Lucchesi 2024
All Rights Reserved

Except where otherwise indicated, this thesis is my own original work.

Lydia R. Lucchesi
20 May 2024

Acknowledgements

I would like to acknowledge and thank the following people and organisations.

First and foremost, Professor Lexing Xie, for her dedicated supervision, guidance, and sup-
port, which made this thesis possible. I feel extremely grateful to have had the opportunity
to learn from Lexing.

Dr. Petra Kuhnert, for her supervision and support throughout the PhD, for the initial invite
to visit Australia and CSIRO, and for the many fun and informative conversations about R.

Professor Jenny L. Davis, for bringing a unique perspective to the supervisory panel, for her
support, and for patiently teaching me about concepts/methods from the social sciences.

The Australian National University (ANU), CSIRO’s Data61, ANU’s Humanising Machine
Intelligence research initiative, and Dr. Justine Lacey (Director of CSIRO’s Responsible In-
novation Future Science Platform), for funding support that helped make this work possible.

Bill Venables, for recommending that smallsets be extended to R Markdown and providing
feedback on the software implementation of it. Professor Kate Henne, for suggesting the use
of focus groups. Dr. Cecile Paris, for providing comments on a manuscript draft.

The focus group participants, for sharing their time, experiences, opinions, and thoughts, to
help the project progress. Future improvements to smallsets will be in large part thanks
to their input and feedback.

Fellow students of the Computational Media Lab (including Alasdair Tran, Alexander Soen,
Josh Nguyen, Minjeong Shin, and Ziyu Chen) and of the Humanising Machine Intelligence
research initiative (including Glen Berman, Jake Stone, Lachlan McGinness, Rachel Aalders,
and Xueyin Zha), for the many great (interdisciplinary) research discussions and for provid-
ing feedback on this work, in meetings and seminars.

Benjamin Altmann and Uwe Ligges from the R CRAN team, for reviewing smallsets and
providing recommendations on how to make the software better. Anonymous reviewers
for the ACM FAccT 2022 conference, for thoughtful comments on a manuscript, which also
influenced subsequent work. Three anonymous thesis examiners, for their thoughtful feedback
and meticulous checks of figures/text, which improved this document.

3

The Midwest Uncertainty Collective at Northwestern University—and in particular, Priyanka
Nanayakkara, Abhraneel Sarma, and Dr. Matthew Kay—for the opportunity to spend a day
working at the lab and present on smallsets; discussions there contributed to transformative
revisions in smallsets version 1.0.0. Dr. Chenhao Tan, director of the Chicago Human+AI
lab, for the opportunity to present on this work at the University of Chicago.

Professor Chris Wikle and Dr. Spencer James, for the mentorship and research opportunities
that opened doors for me and helped prepare me to do doctoral research.

My parents Dave and Roxanne and my sister Emma, for their continued support and for
making the long trip from the United States to Australia to visit me. Polly Logmans & Peter
Caley and Ellen Picard & John Bromilow, for their kindness and support, for making me
feel at home in a new country, and for teaching me about Australian wildlife. My friends
in Australia, for the many great memories. My friends in the United States and abroad, for
staying connected over phone calls and coordinating across big time differences to do so.

Abstract

This thesis is concerned with the communication of data preprocessing. Data preprocessing is

a crucial intermediate stage in quantitative data analysis. During this stage, data practition-

ers decide how to resolve dataset issues and transform, clean, and format the dataset(s). It

can be a challenging stage, full of decisions that have the potential to influence analytical out-

comes. Yet, data preprocessing is often treated as behind-the-scenes work and overlooked in

research dissemination. This discrepancy, in the practice and presentation of data analytics,

is limiting when it comes to replicating, interpreting, and utilising research outputs.

This work makes several contributions to advance the communication of data prepro-

cessing decisions. The first contribution is a new operational view of data preprocessing. It

demarcates data preprocessing within the broader data pipeline and avoids the need to list

out the wide variety of tasks that data preprocessing can encompass. The two most central

contributions include Smallset Timelines and smallsets. The Smallset Timeline is a static

and compact visualisation, documenting the sequence of decisions in a preprocessing pipeline;

it is composed of small data snapshots of different preprocessing steps. The smallsets soft-

ware builds a Smallset Timeline from a user’s data preprocessing script, containing structured

comments with snapshot instructions. Together, Smallset Timelines and smallsets are de-

signed to support the production of accessible data preprocessing documentation, for research

dissemination. The final two contributions are four case studies and a focus group study.

The former demonstrates use of smallsets, in a range of research problems, which rely on

diverse data sources (e.g., citizen science data and home loan data). The latter is a formal

evaluation of smallsets, which gathered feedback from prospective users on the software’s

utility/usability and data on experiences with preprocessing communication, more broadly.

4

Published research outputs

The work in this thesis has resulted in two published research outputs, thus far.

Lydia R. Lucchesi, Petra M. Kuhnert, Jenny L. Davis, and Lexing Xie. 2022. Smallset Time-

lines: A Visual Representation of Data Preprocessing Decisions. In Proceedings of the 2022

ACM Conference on Fairness, Accountability, and Transparency (FAccT ’22). Association

for Computing Machinery, New York, NY, USA, 1136–1153. https://doi.org/10.1145/

3531146.3533175

Lydia R. Lucchesi (2023). smallsets: Visual Documentation for Data Preprocessing. R

package version 2.0.0. https://CRAN.R-project.org/package=smallsets

https://doi.org/10.1145/3531146.3533175
https://doi.org/10.1145/3531146.3533175
https://CRAN.R-project.org/package=smallsets

Contents

Acknowledgements 2

Abstract 4

Published research outputs 5

Contents 6

List of Figures 9

List of Tables 13

List of Code 15

1 Introduction 16
1.1 Motivation . 16
1.2 Principal research question . 19
1.3 Thesis overview . 19

1.3.1 Key contributions . 22

2 Related Work 23
2.1 Varying views of preprocessing . 23
2.2 Downstream preprocessing effects . 26
2.3 Data provenance tools . 27

3 Data Preprocessing Defined 31
3.1 A new operational view . 31

3.1.1 Key design choices . 32
3.1.2 Limitations . 34

3.2 Close synonyms . 35
3.3 Summary . 36

4 Smallset Timelines: A Visualisation of Data Preprocessing Decisions 37
4.1 Intended users and design goals . 38
4.2 Visual design . 40

4.2.1 Three core visual components . 40
4.2.2 Four enrichment features . 45

4.3 Methods for Smallset selection . 49

6

Contents 7

4.3.1 Two optimisation models . 49
4.3.2 Comparing selection methods . 52

4.4 Alternative text . 53
4.5 Summary . 54

5 smallsets: Software for Building Smallset Timelines 56
5.1 Design goals . 57
5.2 User interface and workflow . 58

5.2.1 Inserting structured comments . 58
5.2.2 Figure production and customisation 62
5.2.3 Resources for users . 66

5.3 Package architecture . 69
5.3.1 Dependencies . 69
5.3.2 Internal structure . 70
5.3.3 Unit testing . 74

5.4 The evolution of smallsets . 75
5.4.1 Development history . 75
5.4.2 Streamlining the user interface and workflow 76
5.4.3 Reducing package dependencies . 78
5.4.4 Comments on row tracking in R . 79

5.5 Summary . 80

6 smallsets in Action: Preprocessing Case Studies 81
6.1 Case study 1: Predicting bugs with NASA MDP data 82

6.1.1 The MDP preprocessing literature . 82
6.1.2 Smallset Timelines for dataset CM1 84

6.2 Case study 2: Inference with eBird citizen science data 85
6.2.1 Visualising eBird best practices . 87

6.3 Case study 3: The folktables data for machine learning 89
6.3.1 Preprocessing and algorithmic fairness 89
6.3.2 smallsets in Jupyter Notebooks . 93

6.4 Case study 4: Home lending audits with HMDA data 96
6.4.1 A missing data dilemma . 96

7 Focus Groups on smallsets 100
7.1 Motivation . 100
7.2 Methods . 102

7.2.1 Question development . 102
7.2.2 Recruitment and participants . 103
7.2.3 Focus group procedures . 104
7.2.4 Audio transcription . 105

Contents 8

7.2.5 Analysis of transcripts . 106
7.3 Focus group findings . 106

7.3.1 Preprocessing communication: Data producers 106
7.3.2 Preprocessing communication: Data consumers 109
7.3.3 Impressions of smallsets . 109
7.3.4 Uptake: Challenges and concerns . 111
7.3.5 Reactions to Smallset Timelines . 112
7.3.6 New information and features . 113

7.4 Discussion . 114
7.4.1 Limitations . 114
7.4.2 Key takeaways . 115

8 Conclusion 117
8.1 Summary . 117
8.2 Future work . 119
8.3 Concluding note . 121

Bibliography 122

A Appendix A: The s data dataset 136
A.1 Data generation . 136
A.2 Data preprocessing . 138

B Appendix B: Scripts for Smallset Timelines 139
B.1 Materials for Figure 6.1 . 139
B.2 Materials for Figure 6.2 . 141
B.3 Materials for Figure 6.3 . 143
B.4 Materials for Figure 6.4 . 145
B.5 Materials for Figure 6.8 . 147
B.6 Materials for Figure 6.9 . 149

List of Figures

1.1 Data preprocessing tasks often involve one or more challenging (and some-
times consequential) decisions. The decision tree above shows several example
choices that could be involved in a case of missing data. See Section 1.1 for a
complete discussion. 17

1.2 A graph outline of the thesis. The dark gray box is the broad topic: data
preprocessing. The light gray box is the specific topic: communication of data
preprocessing. Ovals are thesis contributions (with listed chapters). Edges
show connections between topics and contributions. Blue labels indicate the
predominant type of work, involved in each contribution. A full overview of
the thesis can be found in Section 1.3. 20

3.1 Operational view for data preprocessing, in which boundary definitions distin-
guish data preprocessing from neighbouring stages in the data pipeline. See
Section 3.1 for further description of the operational view. Also note that this
diagram uses a linear format, to focus on the boundaries of data preprocessing;
however, in practice, iteration between stages may occur. A discussion on the
limitations of this simplified representation of the data pipeline can be found
in Section 3.1.2. 32

4.1 A Smallset Timeline for the s data dataset and preprocessing scenario (see
Appendix A). A Smallset of five rows was selected through random sampling. 38

4.2 The Smallset Timeline in Figure 4.1 broken down into its three core visual
components: the Smallset, snapshots, and captions. The Smallset consists of
rows 2, 47, 54, 75, and 92 from s data, printed in full in Table A.1. Three
sequential snapshots of the Smallset highlight, with colour, example dataset
changes, due to preprocessing. Three captions (one for each snapshot) describe
the preprocessing steps in more detail. See Section 4.2.1 for a discussion on
components. 41

4.3 Diagram showing discretion in the selection of snapshot points. Alice generates
one snapshot for each preprocessing decision, while Bob combines two related
decisions in the second snapshot. Both sets of snapshots are based on the
s data example (see Appendix A). 44

4.4 An example of the stamps visual feature, discarded early in the design process
of the Smallset Timeline, due to the non-intuitive visual clutter it added to
snapshots. Here, the letter I in the stamp stands for data imputation. 44

9

List of Figures 10

4.5 Overview of three of the four Smallset enrichment features. See Section 4.2.2
for descriptions. Snapshots are based on s data, detailed in Appendix A. . . 46

4.6 A Smallset Timeline (for the s data example detailed in Appendix A) with
a resume marker—the vertical bar after the third snapshot—an enrichment
feature discussed in Section 4.2.2. 48

4.7 Example data representations, generated for Smallset selection, for the s data
dataset and three-step preprocessing scenario, detailed in Appendix A. See the
discussion on data representations in Section 4.3.1. 51

4.8 Smallsets selected by random sampling (left), the coverage model (middle),
and the coverage + variety model (right) for s data (see Appendix A). Shown
for each selection method is one Smallset snapshot with accumulated changes
(indicated by cell color) across the three preprocessing steps (indicated by the
numbering of the cell). Row numbers refer to those in the original dataset (see
Table A.1). 53

4.9 Alt text template for Smallset Timelines. See Section 4.4 for discussion. . . . 54

5.1 Screenshot of a session in RStudio [Posit team, 2023], in which smallsets is
used to build a Smallset Timeline for the s data example (see Appendix A). In
box A (red), there is a data preprocessing script with smallsets structured
comments, which is passed to the Smallset Timeline() command in box B
(blue), producing the figure in box C (green). 57

5.2 Format of snapshot and resume marker structured comments, with colour-
coded arguments. 59

5.3 Two example R preprocessing scripts (A and B) for s data, which consist
of the same code but illustrate different approaches to inserting structured
comments for smallsets. Both Scripts A and B produce the same three-
snapshot Smallset Timeline (Figure 4.1), despite different comment placement. 61

5.4 The smallsets cheatsheet, available on the smallsets website. 68
5.5 Tree network of smallsets dependencies, distinguishing between R packages

that are direct imports in smallsets, default-loaded in an R session, and
indirect dependencies of smallsets. Graph based on data from a dependency
report produced with pkgnet [Burns et al., 2021]. 70

5.6 Network graph of the smallsets functions, showing interdependencies among
both internal and external functions. Dashed edges pointing out from the
Smallset Timeline() node highlight three external functions serving as de-
fault arguments for three of the arguments in Smallset Timeline() (see Ta-
ble 5.1). The lines of code value does not include lines of roxygen2 comments
for function documentation. 71

List of Figures 11

5.7 An R preprocessing script for s data shown three times (the code in black
is constant), to illustrate how smallsets structured comments changed with
each major release of the smallsets software (R1-V0, R2-V1, and R3-V2).
See Section 5.4.2 for a discussion. 77

6.1 Smallset Timeline for MDP CM1 dataset preprocessed according to Gray et al.
[2011]. Smallset selected using the coverage algorithm. See Section 6.1.2 for a
discussion and Appendix B.1 for the preprocessing script and smallsets code
for this figure. 84

6.2 Smallset Timeline for MDP CM1 dataset, for replication. Smallset selected
using the coverage + variety algorithm. See Section 6.1.2 for a discussion and
Appendix B.2 for the preprocessing script and smallsets code for this figure. 86

6.3 Smallset Timeline for the eBird preprocessing steps recommended in Strimas-
Mackey et al. [2023] (see Section 6.2.1). Smallset selected with random sam-
pling. Data are not printed in snapshots, as per the eBird terms of use. The
preprocessing script and smallsets code for this figure are in Appendix B.3. 88

6.4 Smallset Timeline of ACS California data preprocessed with the validity-
median setting. Smallset selected with random sampling. The preprocessing
script and smallsets code for this figure are in Appendix B.4. 91

6.5 The effect of four different preprocessing settings on data and prediction. Plot
a) shows dataset imbalance by gender. Plots b) and c) show group fairness
measures in predictions from a logistic regression model. Error bars refer to
95% Newcombe intervals [Newcombe, 1998]. See Section 6.3.1 for a complete
discussion. 92

6.6 First half of the Jupyter Notebook fairness analysis.ipynb, for the scenario
described in Section 6.3.2, in which smallsets is integrated into a folktables
workflow. The second code cell contains a Python preprocessing function,
documented with smallsets structured comments. The second half of the
Notebook can be found in Figure 6.7, which includes a Smallset Timeline. . . 94

6.7 Second half of the Jupyter Notebook fairness analysis.ipynb, for the scenario
described in Section 6.3.2, in which smallsets is integrated into a folktables
workflow. The output of the fourth code cell is a Smallset Timeline, visualising
the preprocessing code from the second code cell, which is shown in Figure 6.6
(the first half of the Notebook). 95

6.8 Smallset Timeline, created with the smallsets software, detailing the prepro-
cessing decisions of researcher Alice in the home loan data case study discussed
in Section 6.4.1. The preprocessing script and smallsets code for this figure
are in Appendix B.5. 98

List of Figures 12

6.9 Smallset Timeline, created with the smallsets software, detailing the prepro-
cessing decisions of researcher Bob in the home loan data case study discussed
in Section 6.4.1. The preprocessing script and smallsets code for this figure
are in Appendix B.6. 99

7.1 Frequency of different word counts of transcript data items, where a data
item refers to each time a participant took a turn speaking, not including the
moderator. 105

8.1 Example of question 33 from a datasheet [Gebru et al., 2021] being answered
with a Smallset Timeline, built with smallsets. The Smallset Timeline used
as an example above is from case study 4, on Home Mortgage Disclosure Act
(HMDA) data, in Section 6.4. 118

List of Tables

2.1 A series of example data sources, related preprocessing tasks, and estima-
tion/modelling scenarios, discussed in works with a particular focus on data
preprocessing. See Section 2.1 for a discussion on varying views of prepro-
cessing and Chapter 6 for more information on examples 5-7, which form case
studies. 25

4.1 Design goals for Smallset Timelines, including users, utilities, and the corre-
sponding format variations. 39

4.2 Two optimisation models for Smallset selection, discussed in Section 4.3.1. . 50

5.1 Optional arguments in the Smallset Timeline() command, related to Small-
set selection, visual settings, and alt text. The Example column points to
one Smallset Timeline presented in this thesis where the default setting was
changed (not exhaustive of all examples). 64

5.2 Example alt text for the Smallset Timeline in Figure 4.1. The alt text on the
left is automated output from the smallsets software. The alt text on the
right is a manually edited version of the automated output on the left. This
alt text assumes some familiarity with Smallset Timelines and their design. . 65

5.3 The four key backend steps—behind the main Smallset Timeline() command—
summarised. See Section 5.3.2 for a full discussion. 72

5.4 Information about the three major releases of the smallsets software (see
Section 5.4.1). Section 5.4 uses labels R1-V0, R2-V1, and R3-V2 to refer to
the releases. 76

6.1 Four different preprocessing settings used in the folktables prediction tasks
for 2015 ACS income data. Each setting is a unique combination of data
filtering criteria and income threshold selection for generating the class labels.
See Section 6.3.1. 90

6.2 Percentage of denied loans by group and data availability. See Section 6.4.1. 97
6.3 Percentage of denied loans calculated by researchers Alice and Bob. See Sec-

tion 6.4.1. 97

7.1 The three design goals for the smallsets software and the Smallset Timeline
visualisation, first presented in Section 5.1 and Section 4.1, respectively. . . . 101

7.2 Focus group question outline. 103

13

List of Tables 14

7.3 Five example data items from Q2 (see Table 7.2), that highlight a range of
practices for communicating data preprocessing decisions. Items are ordered,
approximately, from the least to the most communication. Blue text pro-
vides context, helpful for understanding the data item. See Section 7.3.1 for a
discussion. 108

A.1 The s data dataset, printed in full, rows 1-100 and columns C1-C8. 137
A.2 Three-step preprocessing scenario for s data, with a fourth-step extension to

illustrate the resume marker enrichment feature. Listing A.2 is the implemen-
tation in R. 138

List of Code

5.1 Example R code for running the main smallsets command for s data, where
the dataset is assigned to object s data and the preprocessing code with in-
serted structured comments is in the file s data preprocess.R, located in the
user’s working directory. 62

5.2 Two quick start examples for smallsets, which use example data and pre-
processing files included in smallsets. The output from each is a Smallset
Timeline. 66

5.3 The internal snapshot-taking function generated by smallsets for the s data
example, where 2, 47, 54, 75, and 92 refer to the Smallset row names. Purple
lines of code indicate those added by smallsets, to the preprocessing code
supplied by the user. 73

A.1 R code for generating the s data dataset. 136
A.2 R code for preprocessing the s data dataset. 138
B.1 R preprocessing script (preprocess mdp 1.R) for Figure 6.1, passed to code

argument in Listing B.2. 139
B.2 The smallsets code for Figure 6.1. 140
B.3 R preprocessing script (preprocess mdp 2.R) for Figure 6.2, passed to code

argument in Listing B.4. 141
B.4 The smallsets code for Figure 6.2. 142
B.5 R preprocessing code (preprocess ebird.R) copied from 2.6-2.8 in Strimas-

Mackey et al. [2023] (except for the red code, added to preserve row names)
and supplemented with structured comments for Figure 6.3. Passed to code

in Listing B.6. 143
B.6 The smallsets code for Figure 6.3. 144
B.7 Python preprocessing script (preprocess folktables.py) for Figure 6.4, passed

to code argument in Listing B.8. 145
B.8 The smallsets code for Figure 6.4. 146
B.9 R preprocessing script (preprocess hmda A.R) for Figure 6.8, passed to code

argument in Listing B.10. 147
B.10 The smallsets code for Figure 6.8. 148
B.11 R preprocessing script (preprocess hmda B.R) for Figure 6.9, passed to code

argument in Listing B.12. 149
B.12 The smallsets code for Figure 6.9. 150

15

Chapter 1

Introduction

Data preprocessing is a crucial intermediate stage in quantitative data analysis but is regu-

larly overlooked in the documentation and dissemination of research. This thesis is concerned

with the communication of data preprocessing. Specifically, it presents a novel visualisation

and software tool for communicating data preprocessing decisions. This chapter begins by

considering the importance, difficulties, and interests in communicating data preprocessing

(Section 1.1). Then, the principal research question is discussed (Section 1.2). That discus-

sion is followed by an overview of the thesis (Section 1.3), which includes a summary of its

original contributions (Section 1.3.1).

1.1 Motivation

This section first explores the question: What is significant about data preprocessing, that

makes communicating it important? Then, difficulties in communicating data preprocessing

are discussed. Finally, this section discusses the growing interest in data provenance.

The significance of data preprocessing

In general, data preprocessing does not have a reputation as being the exciting or interesting

part of data analytics. In fact, its reputation tends to be just the opposite [Sambasivan

et al., 2021]. Yet, data preprocessing requires data practitioners to make decisions about

16

1.1 Motivation 17

Missing data

Drop

Impute

Regression imputation

Mean imputation
Remove outliers first

Do not remove outliers first

Use all variables

Use some variables

Figure 1.1: Data preprocessing tasks often involve one or more challenging (and sometimes
consequential) decisions. The decision tree above shows several example choices that could
be involved in a case of missing data. See Section 1.1 for a complete discussion.

how to address dataset issues, and the decisions are often not straightforward. Decisions in

preprocessing can involve making assumptions and compromises, using domain and statistical

knowledge, and being resourceful. Consider the simple scenario shown in Figure 1.1, in which

a data practitioner must decide whether to impute or drop missing data.1 Although the choice

to drop looks the easiest, it may require a strong assumption about the underlying reason

for missing data.2 Alternatively, an initial choice to impute then requires more decisions

about how to impute. And note that dealing with missing data might be just one of several

preprocessing tasks, each requiring one or more decisions to be made.

Decisions, like those shown in Figure 1.1, matter because they can affect the outcome

of a data analysis. For example, Little et al. [2012] emphasise the importance of minimis-

ing the occurrence of missing data in clinical trials (through good trial design), as handling

missing data well—and not compromising downstream inferences—is difficult. Works in psy-

chology [Steegen et al., 2016], political science [Denny and Spirling, 2018], ecology [Johnston

et al., 2021], computing [Ding et al., 2021, Friedler et al., 2019, Ghotra et al., 2015], and

neuroscience [Robbins et al., 2020, Shirk et al., 2017] have quantified the impact of data

preprocessing decisions on analytical outcomes. Many of these works show that data prepro-

cessing decisions can affect study outcomes. Some show that entirely different conclusions

can be drawn, given different data preprocessing decisions (e.g., Denny and Spirling [2018]

1This example scenario does not present an exhaustive set of options for dealing with missing data but
rather puts forward several plausible options that draw attention to the decision-making aspect of the task.

2Namely, it may require the assumption that the data are missing completely at random (MCAR), so
dropping them will not change the underlying data distribution related to the target variable.

1.1 Motivation 18

and Steegen et al. [2016]).

Another significant aspect of data preprocessing to consider is its evolving role in modern

data analytics. Today, researchers can access many pre-existing datasets online or scrape

the web itself, to facilitate an analysis. Yet, to use this found data, researchers must often

mold (i.e., preprocess) it into a workable form, for the estimation or modelling task at hand.

In other words, data preprocessing is increasingly being embraced as a means of harnessing

readily available data, not immediately fit for purpose. For example, to conduct a demo-

graphic analysis of social media behaviour, researchers have inferred gender from first names

provided in online profile data from platforms like Facebook [Tang et al., 2011] and Twitter

[Mislove et al., 2021]. That preprocessing task typically involves finding another dataset,

with both name and gender information, to predict gender in the dataset of interest.

Difficulties in communicating data preprocessing

Despite the challenge, impact, and pertinence of data preprocessing (as established above), it

is often treated as behind-the-scenes work and overlooked in research dissemination [Leahey,

2008, Meng, 2021, Miceli et al., 2021, Passi and Jackson, 2017, Sambasivan et al., 2021]. This

discrepancy, in the practice and presentation of data analytics, is limiting when it comes

to replicating, interpreting, and utilising research outputs. It also sends misleading signals

about what data analytics really is and what is involved in producing data outputs [Passi and

Jackson, 2017]. There is not necessarily one specific reason for the lack of communication, per

se. However, the lack of expectation and/or obligation to communicate data preprocessing

seems to be a key contributing factor, from which different reasons stem.

For example, in situations in which disclosing dataset issues and preprocessing fixes is

not mandatory, researchers may wonder if doing so might create more undesirable pushback,

in both the peer review and public reception of work, than it is worth [Meng, 2021]. This

may especially be the case for early-career researchers, who may face greater scrutiny over

these types of decisions [Leahey, 2004]. Additionally, dataset documentation work that is

not mandatory may continually get relegated to spare time, if there is any [Miceli et al.,

2021]. On top of this, producing comprehensible descriptions of dataset decisions is a non-

trivial task, that demands more of data practitioners than, say, making preprocessing code

open source [Boulton et al., 2012]. Put simply, there are a variety of reasons that data

preprocessing documentation can fall through the cracks.

1.2 Principal research question 19

Growing interests in data provenance

There has, however, been a notable uptick in work and initiatives related to data provenance,

which refers to where a dataset comes from and how it was produced (and which data prepro-

cessing documentation falls under). The uptick largely pertains to interests in transparency,

accountability, and reproducibility in data analysis. For example, new documentation tem-

plates have been proposed for machine learning research—including datasheets [Gebru et al.,

2021], Dataset Nutrition Labels [Holland et al., 2018], and model cards [Mitchell et al.,

2019]—to support informed use of data and models. Some economic journals are now requir-

ing replication packages with publications [Vilhuber, 2021]. There have been collaborative

efforts to establish new data management standards, such as the FAIR Guiding Princi-

ples [Wilkinson et al., 2016] and intelligent openness [Boulton et al., 2012]. And one of

the premier academic conferences on machine learning and artificial intelligence (NeurIPS)

started a Datasets and Benchmarks Track, to incentivise work on datasets [Vanschoren and

Yeung, 2021]. This thesis contributes to the growing body of work on data provenance, fo-

cusing exclusively on the communication of data preprocessing decisions, where gaps remain.

1.2 Principal research question

Attention to data provenance is increasing. However, practical tools designed to assist specifi-

cally with the communication of data preprocessing decisions remain sparse. This is a notable

gap, as creating accessible data preprocessing documentation is important yet difficult (see

Section 1.1). In turn, this thesis focuses on the following research question: What tool

can be designed, that results in accessible data preprocessing documentation for

data consumers but minimises undue hassle for data producers? The objective

is to promote the effective communication of data preprocessing decisions, by making the

communication task simple, easy, and worthwhile for data producers.

1.3 Thesis overview

Figure 1.2 presents a high-level outline of the thesis. It shows the topics of interest, the

original contributions, and the connections between them. Namely, it shows that there is one

contribution related to the broad topic of data preprocessing and four contributions related

1.3 Thesis overview 20

Chapter 3:
Operational

View

Communication

Chapter 5:

smallsets

Chapter 6:
Case

Studies

Chapter 7:
Focus

Groups

Software Development

Visual Design

Application Evaluation

Conceptualisation

Chapter 4:
Smallset
Timelines

Data Preprocessing

Figure 1.2: A graph outline of the thesis. The dark gray box is the broad topic: data
preprocessing. The light gray box is the specific topic: communication of data preprocessing.
Ovals are thesis contributions (with listed chapters). Edges show connections between topics
and contributions. Blue labels indicate the predominant type of work, involved in each
contribution. A full overview of the thesis can be found in Section 1.3.

to the communication of data preprocessing. As indicated by the edges in Figure 1.2, all

contributions are connected, either directly or indirectly. Following the order of Figure 1.2

and starting with Chapter 3, this section provides an overview of the thesis. Note that

Chapter 2 is about related work on data preprocessing and data provenance, including the

documentation and visualisation of dataset changes.

The main focus of the thesis is data preprocessing communication. However, Chapter 3

takes a step back, to first consider data preprocessing itself. What is data preprocessing?

It is an important question to answer early, to ensure the focus and scope of subsequent

contributions are clear. Despite the ubiquity of data preprocessing in data analytics, there

is not necessarily one widely-accepted definition of the term. Moreover, different terms are

regularly used to refer to the same type of work involved in data preprocessing. Consider

data processing or data wrangling, for example. Does this thesis pertain to those practices,

too? Chapter 3 answers both questions, with a new operational view of data preprocessing.

1.3 Thesis overview 21

It is a generalised view (used thereafter in the thesis) that defines data preprocessing not by

the different types of tasks it may entail but by its procedural boundaries.

Next, Chapters 4 and 5 present the Smallset Timeline visualisation and smallsets soft-

ware, respectively. These are the two most central contributions of the thesis and together

aim to address the principal research question, presented in Section 1.2. Specifically, the

Smallset Timeline is designed to result in accessible data preprocessing documentation for

data consumers, while smallsets is designed to minimise undue hassle for data producers.

The Smallset Timeline is a static, compact visualisation—composed of small data snapshots

of different preprocessing steps—that documents the sequence of decisions in a preprocessing

pipeline. The smallsets R software package builds a Smallset Timeline from the user’s R or

Python preprocessing code; users simply add structured comments with snapshot instructions

to the code.

After an in-depth description of smallsets in Chapter 5, smallsets is put to use in four

data preprocessing case studies in Chapter 6. The first case study is about software defect

detection research. The second is about using citizen science data in ecological modelling.

The third is about measuring algorithmic fairness. And the fourth is about home loan lending

audits. The case studies are diverse in terms of research domain, but all highlight the critical

role that data preprocessing plays, for a particular research problem. Two case studies also

involve analyses that quantify the downstream effects of data preprocessing decisions on

analytical outcomes. In total, this chapter presents six example Smallset Timelines (built

with smallsets) visualising real-world data preprocessing scenarios.

Chapter 7 presents a focus group study, an initial step in formally evaluating smallsets.

The focus group questions were designed to initiate discussion on three aspects of smallsets:

1) its deployment context, 2) its utility/usability, and 3) its output (the Smallset Timeline).

There were four focus groups, with a total of 13 data practitioners with preprocessing expe-

rience. The findings highlight strengths and weaknesses of smallsets and where to direct

future software development efforts, to best meet the needs of data practitioners. The study

also generated qualitative data on real-world experiences with preprocessing communication,

from both the perspective of data producer and consumer.

Chapter 8 presents conclusions of this thesis and discusses future work.

1.3 Thesis overview 22

1.3.1 Key contributions

The original contributions of the thesis are summarised below. As illustrated in Figure 1.2,

the contributions involve different research types and approaches, including conceptual work,

visual design, software development, applied research, and qualitative research.

• A new operational view of data preprocessing, diagramming the location and bound-

aries of data preprocessing within the broader data pipeline (Chapter 3).

• A new static and compact visualisation, the Smallset Timeline, that documents the

sequence of decisions in data preprocessing (Chapter 4).

• smallsets, open-source software for building Smallset Timelines for tabular datasets

preprocessed in R, R Markdown, Python, or Jupyter Notebooks (Chapter 5).

• Four diverse data preprocessing case studies that demonstrate use of smallsets and

illustrate downstream effects from data preprocessing decisions (Chapter 6).

• A focus group study with data practitioners that gathered feedback on smallsets as

well as data on preprocessing communication, more broadly (Chapter 7).

Chapter 2

Related Work

This chapter provides an overview of related work in data preprocessing and data provenance.

First, Section 2.1 highlights different views of data preprocessing found in the literature.

Next, Section 2.2 details work quantifying the downstream effects of data preprocessing deci-

sions on analytical outcomes. Then, Section 2.3 presents related work on data provenance—

specifically, the documentation and visualisation of dataset changes. Each section ends with

a discussion on how the contributions of this thesis build on and differ from related work.

2.1 Varying views of preprocessing

This section discusses the various ways that data preprocessing is described and defined in

the literature. The discussion is limited to literature containing the word preprocessing. It

starts with literature that describes preprocessing for different sources and types of data.

From there, it shifts to broader and more conceptual views of preprocessing.

Domain-specific views of data preprocessing

For data practitioners, the word preprocessing may bring to mind a specific set of tasks,

related to the type of data they regularly work with. For example, for ecologists working

with Landsat data (satellite imagery), the word preprocessing might bring to mind geometric,

solar, atmospheric, and topographic corrections [Young et al., 2017]. Meanwhile, for political

23

2.1 Varying views of preprocessing 24

scientists working with political texts as data, it might bring to mind choices about stemming,

stopword removal, and n-gram inclusion [Denny and Spirling, 2018]. Table 2.1 presents seven

sets of preprocessing tasks, extracted from articles focused either entirely or mostly on data

preprocessing. Individually, these articles detail what preprocessing means for a particular

source or type of data. Collectively, they highlight the wide variety of preprocessing tasks

that exist across different domains.

Broad conceptualisations of data preprocessing

Some works zoom out to discuss data preprocessing more generally. This includes in the

context of data mining [Garćıa et al., 2015], data analysis [Famili et al., 1997], and statistics

curricula [Zhu et al., 2013]. Generalised views of preprocessing are not linked to a certain

domain or dataset. Yet, like the views in Table 2.1, they tend to focus heavily on prepro-

cessing tasks (but at a high-level). For example, in the context of data mining, Garćıa et al.

[2015] define data preprocessing in terms of high-level tasks, split into two categories. The

first category is data preparation and consists of data cleaning, data transformation, data in-

tegration, data normalization, missing data imputation, and noise identification. The second

category is data reduction and consists of feature selection, instance selection, discretization,

and feature extraction and/or instance generation.

Discussion

From Table 2.1, we can see that the term data preprocessing does not necessarily put data

practitioners on the same page, if their understanding of the term is tied to domain-specific

tasks. Therefore, the meaning of data preprocessing used for this thesis is clarified in Chap-

ter 3. Specifically, a new operational view of data preprocessing is presented. It builds on

generalised views of data preprocessing found in the literature. However, instead of cate-

gorising the types of tasks that preprocessing entails, the new view demarcates preprocessing

from other stages in the data pipeline. Then, for each data analysis, data-related tasks can

be classified as preprocessing, based on their location and purpose within the broader data

pipeline, rather than on what they are called. This helps to make the generalised view robust

to the wide variety of preprocessing tasks that exist across domains (see Table 2.1).

2.1 Varying views of preprocessing 25

Data source:
content

Example data preprocessing
tasks

Example estima-
tion/modelling
task

Source(s)

Landsat data:
satellite imagery

Georeferencing; co-registration;
conversion to radiance; solar,
atmospheric, topographic, and
relative radiometric corrections

Spectral indices to
highlight different
land features

[Young et al., 2017]

Congressional bills:
unstructured text

Remove punctuation, numbers,
stopwords, and infrequent terms;
stemming; lowercasing; n-gram
inclusion

Latent Dirichlet
Allocation (LDA) to
identify topics

[Denny and Spirling,
2018]

EEG data: electrical
brain activity (brain
waves)

Remove artefacts, e.g., eye
blinks and faulty sensors

Event-related
potential (ERP)
effects for a memory
task

[Shirk et al., 2017]

Medical Information
Mart for Intensive
Care (MIMIC-III)
dataset: electronic
health records

Unit conversions; aggregate
timestamps and medical codes;
derive a medical intervention
feature

Logistic regression
model to predict
mortality

[Wang et al., 2020]

NASA Metrics Data
Program (MDP)
datasets: software
module specifications

Remove constant and repeated
attributes; replace missing
values; run integrity checks;
remove duplicate and
inconsistent cases

Random forest
classifier to predict
defectiveness

[Gray et al., 2011,
2012, Petrić et al.,
2016, Shepperd
et al., 2013]

eBird data: bird
observations by
citizen scientists

Spatial subsampling; create
effort covariates; apply effort
filters

Species distribution
model to map
estimated occurrence

[Johnston et al.,
2021,
Strimas-Mackey
et al., 2023]

Home Mortgage
Disclosure Act
(HMDA) data: home
loan applications and
lending decisions

Address non-pricing issues (e.g.,
geographic issues), missing race
or ethnicity data, missing
income data, and pricing issues
(e.g., yield curve changes)

Linear probability
model to assess
lending fairness

[Avery et al., 2007]

Table 2.1: A series of example data sources, related preprocessing tasks, and estimation/-
modelling scenarios, discussed in works with a particular focus on data preprocessing. See
Section 2.1 for a discussion on varying views of preprocessing and Chapter 6 for more infor-
mation on examples 5-7, which form case studies.

2.2 Downstream preprocessing effects 26

2.2 Downstream preprocessing effects

As outlined above, preprocessing involves different data-related tasks. However, preprocess-

ing is not simply executing these tasks. Rather, part of preprocessing is deciding which tasks

to implement and how. Research about preprocessing effects investigates if study outcomes

are sensitive to these decisions. This section highlights three areas of related work on pre-

processing effects: 1) generalised methods for measuring effects, 2) graphical support for

assessing effects, and 3) domain-specific studies of effects.

Generalised methods for measuring effects

There have been different methods proposed for measuring preprocessing effects in data an-

alytics. Blocker and Meng [2013] draw on the statistical concept of multiphase inference to

develop a theoretical framework for evaluating data preprocessing. Steegen et al. [2016] pro-

pose the multiverse analysis. This involves running the same hypothesis test on all plausible

preparations of a dataset, to check how sensitive the analytical outcome is to preprocessing

decisions. Denny and Spirling [2018] propose the preText method, for unsupervised learning

in document analysis. This method looks at how the pairwise distances between documents

change, with the application of different preprocessing operations. Software support for the

multiverse analysis and preText are available in the multiverse [Sarma et al., 2023] and

preText [Denny and Spirling, 2021] R packages, respectively.

Graphical support for assessing effects

There is also graphical support for assessing preprocessing effects in machine learning (ML).

This includes the What-If Tool (WIT) [Wexler et al., 2020] and fair-DAGs [Yang et al., 2020].

WIT provides a graphical user interface that enables ML practitioners to interactively explore

a model and its input data. Users can edit input data directly and re-run a model, to see if

the model changes. The fair-DAGs tool is an open-source Python library for investigating

the impact of preprocessing on ML pipelines, and in particular, algorithmic fairness. It builds

a directed acyclic graph (DAG) visualising how data moves through the preprocessing steps.

It also generates a report, detailing changes to sensitive variables (e.g., race and gender),

with respect to the target variable, at the DAG vertices. The aim is to identify where biases

against particular groups might be introduced, through operations like filtering or binning.

2.3 Data provenance tools 27

Domain-specific studies of effects

There are also domain-specific studies of preprocessing effects. These studies test if an ana-

lytical outcome changes, given the same (un-preprocessed) dataset and estimation/modelling

strategy but different data preprocessing decisions. These studies have been conducted in

a range of fields, such as neuroscience [Robbins et al., 2020, Shirk et al., 2017], machine

learning [Ding et al., 2021, Friedler et al., 2019, Ghotra et al., 2015], political science [Denny

and Spirling, 2018], ecology [Johnston et al., 2021], and psychology [Steegen et al., 2016].

Many of these studies show, quantitatively, that preprocessing decisions influence analyt-

ical outcomes. For example, Friedler et al. [2019] compared the performance of ML fairness

interventions,1 applied to different data preparations. The authors observed “a fairness-

accuracy tradeoff which arises not from hyperparameters, but from choice of preprocessing”

(italics in original) [p. 332]. For one data preparation, the model accuracy tended to be

higher, while group fairness was lower. For the other data preparation, the reverse was true.

Discussion

Broadly speaking, this diverse body of literature on preprocessing effects is concerned with the

impact of data preprocessing decisions on analytical outcomes. The domain-specific studies,

in particular, underscore the importance of documenting data preprocessing decisions. These

types of studies motivate the work presented in Chapters 4 and 5, on Smallset Timelines

and smallsets, respectively. Studies assessing preprocessing effects are discussed again in

Chapter 6, which presents four case studies. Two of the case studies in Chapter 6 also feature

new analyses quantifying preprocessing effects. One is similar to the work by Friedler et al.

[2019] (discussed above), in that it focuses on differences in group fairness in ML prediction

tasks, due to variations in preprocessing. The topic of preprocessing effects emerges again in

Chapter 7, as a noteworthy aspect of the data from the focus group study.

2.3 Data provenance tools

This next section focuses on data provenance tools. Data provenance tools are developed

to record, organise, display, and/or visualise information about where a dataset comes from

1Fairness interventions aim to ensure that algorithmic decision aids do not discriminate by sensitive
attributes, such as race, gender, age, etc.

2.3 Data provenance tools 28

and how it was produced. In this section, various types of data provenance tools are dis-

cussed. This includes broad documentation frameworks, software tools to automate prove-

nance keeping, interactive visualisation systems, and both dynamic and static visualisations

of data transformations.

Documentation templates and frameworks for ML

There have been various documentation tools proposed for machine learning (ML) research,

including datasheets [Gebru et al., 2021], model cards [Mitchell et al., 2019], the Dataset

Nutrition Label [Holland et al., 2018], data statements [Bender and Friedman, 2018], Fact-

Sheets [Arnold et al., 2019], and the REFORMS checklist [Kapoor et al., 2024]. These tools

encourage data producers to document and share dataset information, to support informed

use of data and models.

Several modules in the Dataset Nutrition Label have graphical components to explore

variable distributions (e.g., histograms) and correlations (e.g., heat maps). Otherwise, the

tools listed above represent text-based approaches to documentation. For example, the

datasheet [Gebru et al., 2021] contains 57 questions to answer about a dataset, with four ded-

icated to preprocessing.2 This datasheet template has since been adapted for specific types

of data, such as health and speech datasets [Papakyriakopoulos et al., 2023, Rostamzadeh

et al., 2022].

Documentation software

In general, the expectation for many of the documentation tools discussed above is that data

practitioners will manually fill out the templates/frameworks. There has also been related

work, however, in automating the production of dataset documentation. For example, the

Jupyter Lab extension DocML [Bhat et al., 2023] can export Markdown cells from a Jupyter

Notebook directly to a model card [Mitchell et al., 2019], one of the ML frameworks mentioned

previously. Bhat et al. [2023] found in a user study that DocML encouraged ML practitioners

to fill out model cards more thoroughly and update them in real-time.

Another example is E2ETools [Lerner et al., 2023]. It is a suite of seven R packages for

data provenance, with a particular focus on reproducible analyses. Users can incorporate

2For example, question 33 in a datasheet [Gebru et al., 2021] is as follows: “Was any preprocessing/clean-
ing/labeling of the data done (for example, discretization or bucketing, tokenization, part-of-speech tagging,
SIFT feature extraction, removal of instances, processing of missing values)?” [p. 90-91].

2.3 Data provenance tools 29

the packages into an R data analysis, to collect and save three types of provenance informa-

tion: environment information (e.g., R package versions), course-grained information (e.g.,

data inputs to and outputs from R scripts), and fine-grained information (e.g., a line-by-

line log of object assignment). In E2ETools, provenance information can be viewed in a

short report with provSummarizeR [Lerner, 2022] or visualised in a provenance graph with

provViz [Lerner and Boose, 2014].

Interactive visualisation systems

There are also interactive visualisation systems, that both assist data practitioners with

data work and have data provenance features. Wrangler [Kandel et al., 2011] was a system

that assisted users with preprocessing, recommending relevant data transformations that

could be executed with point-and-click commands. Users could also add annotations to

transformations. These annotations were included as code comments in programming scripts

exported from Wrangler. In VisTrails [Bavoil et al., 2005], users could generate, compare,

and annotate data workflows and the production of scientific visualisations. Data Quality

Provenance (DQProv) Explorer [Bors et al., 2019] is a visual analytics tool with three different

displays for assessing data quality at different data states.

Animated visualisations of data transformations

Some works propose the use of animation to visualise data transformations, for data con-

sumers. Khan et al. [2017] developed data tweening, which involves animating the transfor-

mations occurring between two database queries. It shows, step-by-step, how the structure

of a table changes from one query to the next. Pu et al. [2021] developed datamations. A

datamation animates individual data points moving through a data analysis pipeline. It is

designed to show the data manipulation process required to produce a figure or table.

Static visualisations of data transformations

Other works propose static visualisations of data transformations. For example, the Data

Comic [Zhao et al., 2015] uses traditional aspects of a comic strip—i.e., storyline, small panels,

characters, speech bubbles, graphics, etc.—to tell an accessible and engaging story about

data. Wang et al. [2021] use Data Comics to visualise the steps in a user study in Human-

Computer Interaction (HCI). Specifically, they divide an HCI user study into ten stages and

2.3 Data provenance tools 30

dedicate one or more panels in the comic to each stage. One stage is Data Transformations,

for explaining assumption checks, transformations, and outlier removal. In an example, they

illustrate how a logarithmic transformation can be visually explained in a data transformation

panel, by showing density and Q-Q plots before and after the transformation.

The provViz package in E2ETools [Lerner and Boose, 2014] and the fair-DAGs li-

brary [Yang et al., 2020]—mentioned previously in this chapter—also produce static visu-

alisations of data transformations. Both use graphs of nodes and edges to visualise a pro-

gramming script and how data moves through it. For the reporting of randomised controlled

trials (RCTs), there is the CONSORT diagram [Begg et al., 1996, Moher et al., 2001, Schulz

et al., 2010]. This is a flow diagram that visualises participant groups and numbers through-

out the different stages of a clinical trial. The two most recent versions of the CONSORT

diagram encourage researchers to document how many participants were excluded from the

statistical analysis and why. The R software package consort [Dayim, 2023] is designed to

help researchers build this diagram.

Discussion

Data provenance is broad, and many of the tools discussed above focus on multiple aspects of

data provenance. In this thesis, the choice is made to focus exclusively on data preprocess-

ing decisions. Specifically, Chapter 4 proposes a new visualisation, the Smallset Timeline,

that documents the sequence of decisions involved in a data preprocessing pipeline. Similar

to the animated visualisations mentioned above, it shows how a dataset changes, step-by-

step. However, the Smallset Timeline is a static and compact depiction of steps, such that it

can be easily shared in many different mediums, including print.

Chapter 5 proposes smallsets, an open-source software tool for building Smallset Time-

lines. Similar to fair-DAGs and provViz, smallsets captures the effects of code on data,

but its output—the Smallset Timeline—visualises the process with small data snapshots and

captions (instead of nodes and edges in a graph). The smallsets tool can be used to an-

swer preprocessing prompts in broader data provenance templates like datasheets and model

cards, which practitioners are typically expected to complete by hand and with text alone.

Chapter 3

Data Preprocessing Defined

As illustrated in Section 2.1, there are many ways that data preprocessing is presented in

the literature. Thus, it is important to establish a mutual understanding of the term, to

ensure the focus and scope of subsequent chapters are clear. In turn, this chapter presents

an operational view of data preprocessing (Section 3.1), used in the remainder of the thesis.

This chapter also touches on various synonyms of the term data preprocessing (e.g., data

cleaning and data processing), justifying the selection of data preprocessing as opposed to

one of these alternatives (Section 3.2).

3.1 A new operational view

This section presents a new operational view of data preprocessing. It builds on existing

conceptualisations of data preprocessing, outlined in Section 2.1, but with several notable

differences, which are discussed in Section 3.1.1. The operational view is diagrammed in Fig-

ure 3.1. It defines data preprocessing by drawing a boundary around it, within a (simplified)

data pipeline. Therefore, everything within the boundary can be classified as data prepro-

cessing. As shown in the diagram, a simple three-stage data pipeline is assumed. It consists

of 1) data collection, 2) data preprocessing, and 3) estimation and modelling. Boundary

definitions between adjacent stages establish the beginning and end of data preprocessing.

In particular, the completion of data collection is defined, creating the left-hand boundary of

31

3.1 A new operational view 32

1. Data Collection
2. Data Preprocessing

3. Estimation & Modelling

Data collection is complete when
the information of interest exists in a
location separate from the source.

Data preprocessing is complete when
the dataset can be used to produce
the intended type of output estimates.

discretise
fix

generate
merge

filter
impute

normalise
outlier

format
select

example actions

Figure 3.1: Operational view for data preprocessing, in which boundary definitions distin-
guish data preprocessing from neighbouring stages in the data pipeline. See Section 3.1 for
further description of the operational view. Also note that this diagram uses a linear format,
to focus on the boundaries of data preprocessing; however, in practice, iteration between
stages may occur. A discussion on the limitations of this simplified representation of the
data pipeline can be found in Section 3.1.2.

data preprocessing. What constitutes a completion of data preprocessing is also defined, cre-

ating the right-hand boundary. Thus, any actions altering the dataset(s) between the left and

right boundaries can be classified as data preprocessing. Moreover, the decisions—occurring

between the left and right boundaries—about what actions to implement (and why/how to

implement them) can be classified as data preprocessing decisions.

3.1.1 Key design choices

There were three key choices that shaped development of the operational view proposed

above (see Figure 3.1): 1) the view should not centre on preprocessing tasks, 2) it should

elaborate on the data pipeline, and 3) it should avoid use of the words raw and analysis in

certain contexts. These choices are discussed below.

Not centring on preprocessing tasks

As demonstrated in Section 2.1, it is common to present data preprocessing, in terms of the

tasks it entails. However, the first key design choice was to not centre the view around a list

or taxonomy of preprocessing tasks, given the immense variety of them (see Table 2.1) and

the difficulty of producing something comprehensive. Moreover, existing lists/taxonomies are

already inconsistent. For example, Garćıa et al. [2015] treat data preparation as a category

of techniques that includes both data transformation and noise identification. Meanwhile,

Famili et al. [1997] treat “preparation for data analysis” [p. 3] as one of two key reasons for

3.1 A new operational view 33

preprocessing and data transformation as one of three broad categories of techniques, under

which noise modelling is categorised.

Instead, the boundary approach in Section 3.1 eliminates the need to list out or taxonimise

all possible tasks (though some are provided in Figure 3.1 as examples). It also makes the

view robust to variability in the location and purpose of tasks, within a data pipeline, as tasks

seen in preprocessing are not necessarily exclusive to preprocessing. For example, inference

and prediction can be used to generate new features in a dataset or produce the final output of

an analysis. However, using the operational view in Figure 3.1, we know that if the inference

or prediction task changes the dataset to facilitate the final estimation or modelling task,

it is part of data preprocessing. Consider the example mentioned in Section 1.1, in which

gender is inferred from online profile names, to facilitate the study of social media behaviour

by demographic characteristics [Mislove et al., 2021, Tang et al., 2011]. Here, despite the

name of the task, gender inference would be classified as data preprocessing, given that its

purpose is to make the online profile data usable.

Elaborating on the data pipeline

Defining data preprocessing by its position in the data pipeline is also common. Following

are two examples of this: 1) “[d]ata preprocessing consists of all the actions taken before the

actual data analysis process starts” [Famili et al., 1997, p. 8] and 2) “data preprocessing

bridges the gap from data acquisition to statistical analysis” [Zhu et al., 2013, p. 235]. The

view in Figure 3.1 uses this approach but with added boundary definitions—to demarcate

data preprocessing—and a diagram to visualise them. The boundary definitions provide ad-

ditional information about pipeline stages. Notably, the second boundary definition imparts

intention in data preprocessing work, conveying that data alterations are expressly moti-

vated by the subsequent stage of estimation and modelling. The diagram helps to underscore

the critical role of preprocessing in data analytics; preprocessing is placed alongside other

important data stages and allocated substantial space within the diagram.

Avoiding the words raw and analysis

The operational view avoids use of the word raw in reference to data (i.e., “raw data”). Raw

is a popular data descriptor, used to indicate that data have not been altered in any way

since collection. In other words, it is a common way to allude to data that have not been

3.1 A new operational view 34

preprocessed. However, heeding warnings from the field of science studies,1 the descriptor is

avoided in this thesis. Raw implies that data exist naturally and then are “cooked,” when in

fact we create data through decisions about what information to collect and how to collect

it [Gitelman, 2013]. In other words, the “cooking” of data starts before data preprocessing,

so raw can be misleading. The term un-preprocessed is used instead.

Use of the word analysis—as in “data analysis” or “statistical analysis”—is also avoided,

when referring to a stage in the pipeline distinct from data preprocessing. In this thesis, the

preference is to only use data analysis as a broad term that encompasses multiple stages,

including data preprocessing. In turn, data preprocessing is presented as a crucial part of a

data analysis instead of as a precursor to it, where it is more likely to be overlooked and its

effects underestimated.

3.1.2 Limitations

There are also limitations to the operational view presented in Figure 3.1. The diagram has a

linear format, implying analyses are a straight and forward-moving process, when in practice

some iteration between stages may be necessary. For certain analyses the boundary points

may still seem blurry, despite the boundary definitions. Consider particle physics, where data

may be preprocessed as they are collected to manage data volume [Radovic et al., 2018], or

the R command rpart() for building regression trees [Therneau and Atkinson, 2023], which

defaults to removing observations with missing values for the dependent variable.

Additionally, the title of the third stage—Estimation & Modelling—could also include

terms like Prediction, Forecasting, or Inference to be more comprehensive. However, for

brevity, two terms—that were not analysis (see Section 3.1.1) and that seemed general and

comprehensive enough—were selected. Lastly, the diagram communicates what part of the

data pipeline this thesis is focused on, but it does not provide significant insight into the

nature of preprocessing work. Specifically, the view itself does not capture the ways in which

data preprocessing often requires data practitioners to make challenging decisions, do data

detective work, use creativity to resolve data problems, or employ domain and statistical

knowledge.

1The study of science and how it is produced and used in society.

3.2 Close synonyms 35

3.2 Close synonyms

In this chapter on defining data preprocessing, it is worth acknowledging the term’s many

close synonyms, some of which are used widely and instead of data preprocessing. If there

was a thesaurus of data science terms, the entry for data preprocessing might include the

following: data blending, data cleaning, data construction, data crunching, data editing, data

franchising, data manipulation, data munging, data preparation, data processing, and data

wrangling. Across these terms, there is overlap in the type of data work they entail. Moreover,

they are sometimes used interchangeably, which is why they are presented as close synonyms.

However, there are also important nuances in meaning.

For example, data cleaning and data blending are more specific than data preprocessing

and could be thought of as subsets of preprocessing. However, data processing could be seen

as adjacent to preprocessing, given the prefix pre in the latter. In general though, the term

data processing is used liberally. It has been used to refer to the preparation of datasets for

storage in archives and use in secondary analyses [Plantin, 2019]. There, it involves data

cleaning for some future use. At the Australian Bureau of Statistics, data processing involves

“Despatch and Collection Control,” “Data Capture and Coding,” and “Editing” [Australian

Bureau of Statistics, 2023]. The Cambridge Dictionary2 simply defines it as “the use of a

computer to perform calculations on data.”

Many of the related works cited throughout this thesis use these synonyms. For example,

Leahey [2004] uses data editing. Kasica et al. [2021] use data wrangling. Steegen et al. [2016]

use data construction and data processing. For this thesis, I elected to use the term data

preprocessing. As indicated above, some synonyms were either too specific (e.g., cleaning or

blending) or too broad (e.g., processing or wrangling), for the purpose of this work. Prepro-

cessing, though, is not too specific, in terms of the types of data operations it may entail,

but also not too broad, in terms of the parts of a data analysis it may refer to. It is also not

too niche, appearing in academic literature from a range of fields (e.g., statistics [Blocker and

Meng, 2013], political science [Denny and Spirling, 2018], medicine [Robbins et al., 2020],

and ecology [Young et al., 2017], to name a few). These features made it a suitable choice.

For consistency, the term data preprocessing is used exclusively in this thesis. Moreover,

in the following chapters, the Smallset Timeline visualisation and smallsets software tool

2https://dictionary.cambridge.org/dictionary/english/data-processing

https://dictionary.cambridge.org/dictionary/english/data-processing

3.3 Summary 36

are proposed for communicating data preprocessing decisions. However, despite the choice of

terminology, Smallset Timelines and smallsets are also applicable to these close synonyms,

when used to refer to work falling within the boundaries of data preprocessing established in

Section 3.1 (i.e., the shaded region in Figure 3.1). For example, a Smallset Timeline can be

used to communicate data cleaning decisions that occur after data collection and before the

estimation/modelling stage.

3.3 Summary

The objective of this chapter was to clarify the meaning of the term data preprocessing used

in this work, as there is not necessarily one widely accepted definition of the term that makes

its meaning explicitly clear. In turn, an operational view of data preprocessing was presented

(Figure 3.1), which is used in all subsequent chapters. It assumes a three-stage data pipeline,

in which data preprocessing is an intermediate stage occurring after data collection and before

estimation and modelling. Boundary definitions between stages demarcate data preprocessing

work. The following chapter proposes a new visualisation—the Smallset Timeline—focused

specifically on the decisions made during data preprocessing.

Chapter 4

Smallset Timelines: A Visualisation of

Data Preprocessing Decisions

The previous chapter clarified which part of the data pipeline is of interest in this thesis. In

particular, the focus is on the data preprocessing stage, which occurs after data collection and

before estimation and modelling (see Figure 3.1). This chapter presents a novel visualisation,

the Smallset Timeline, designed to communicate what happens during this crucial stage, full

of important decisions. To date, tools designed specifically for this purpose have been sparse,

especially those utilising visualisation, a powerful mode of communication.

The Smallset Timeline is a static, compact visualisation composed of small data snap-

shots of different preprocessing steps. Figure 4.1 is an example Smallset Timeline, visualising

preprocessing steps for the synthetic dataset s data, used throughout this chapter for illus-

tration.1 The Smallset Timeline uses a small set of data—i.e., a Smallset—from the original

dataset, to provide a step-by-step depiction of data preprocessing decisions. Snapshots of the

Smallset—taken at different moments in the preprocessing stage—colour-encode examples of

dataset changes due to preprocessing. Snapshot captions, supplied by the data producer,

explain each step in greater detail.

The remainder of this chapter provides a detailed explanation of Smallset Timelines and

is structured as follows. Section 4.1 introduces the intended users and design goals of the

1The s data dataset has 100 rows and eight columns (C1-C8). More information on s data can be found
in Appendix A.

37

4.1 Intended users and design goals 38

C1 C2 C3 C4 C5 C6 C7 C8

Remove rows where C2 is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replace missing values in C6 and C8
with column means. Drop C7 because
there are too many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Create a new column, C9, by summing
C3 and C4.

Added Deleted Edited Unchanged

Figure 4.1: A Smallset Timeline for the s data dataset and preprocessing scenario (see Ap-
pendix A). A Smallset of five rows was selected through random sampling.

Smallset Timeline, highlighting its utility for both data producers and consumers and its

adaptability to different communication settings and information needs. Section 4.2 details

the visual design. This includes the Smallset Timeline’s three core visual components (the

Smallset, snapshots, and captions) and four optional enrichment features, used to “enrich”

the figure with additional dataset/preprocessing information. Section 4.3 presents automated

methods for selecting Smallset rows, a crucial aspect in figure construction. Finally, Sec-

tion 4.4 presents automated alternative (alt) text production, for making content in Smallset

Timelines accessible to those with visual impairments.

4.1 Intended users and design goals

The Smallset Timeline was designed with two users and three design goals in mind. The

users are Timeline creator and Timeline reader, and the three design goals relate to these

users. Among Timeline creators, the Smallset Timeline is designed to encourage reflection on

and reflexivity about data preprocessing decisions. Among Timeline readers, it is designed

to support reproducibility and replicability as well as comprehension and evaluation of data

preprocessing decisions. These design goals are summarised in Table 4.1 and discussed in

more detail below.

The first design goal is to encourage Timeline creators (i.e., data practitioners) to reflect

4.1 Intended users and design goals 39

Reflect & Be Reflexive Reproduce & Replicate Comprehend & Evalu-
ate

User: action Data practitioner: create Data practitioner: read Target audience: read

Outcome Asks practitioners to re-
count their decision-making
process in the Smallset
Timeline captions, encour-
aging reflection for the pre-
processing stage and reflex-
ivity about their influence
on the work and outcomes.

Provides visual examples
and written descriptions
of preprocessing steps per-
formed in a programming
language. Documents in-
formation in a stable for-
mat that can be saved and
shared.

Provides an accessible pre-
processing narrative with
enough information for de-
cisions to be understood
and assessed. Highlights
the role that humans play
in data production.

Presentation Reflection and reflexivity
occur while writing cap-
tions for the Smallset Time-
line.

– Smallset with more rows
– More snapshots
– Detailed captions

– Smallset with fewer rows
– Fewer snapshots
– Succinct captions

Table 4.1: Design goals for Smallset Timelines, including users, utilities, and the correspond-
ing format variations.

on and be reflexive about their data preprocessing decisions. To create a Smallset Timeline,

Timeline creators must recount their decision-making process, in the snapshot captions (see

Section 4.2.1). This ideally prompts reflection on their decisions and facilitates reflexivity.

Reflexivity can refer to the research practice of examining how one’s own subjectivities have

impacted the formulation, trajectory, and outcome of an analysis [Mauthner and Doucet,

2003]. Traditionally, it has been viewed as an important practice for those working with

qualitative data, where researcher subjectivity is acknowledged [Lumsden et al., 2019]. Today,

there is a growing call to incorporate reflexivity into quantitative work as well [D’Ignazio and

Klein, 2020, Elish and boyd, 2018, Miceli et al., 2021, Tanweer et al., 2021].

The second goal is to support reproducibility and replicability. If preprocessing informa-

tion is not shared, it may be challenging to accurately reproduce an analysis. If preprocessing

code is shared, the Smallset Timeline can serve as an access point to the code, which can

be overwhelming to interpret on its own. Having the Smallset Timeline may be especially

helpful when hitting runtime errors in open-source preprocessing code. As for replicability,

missing preprocessing information may impede the replication of a result with different data,

if the preprocessing decisions were consequential in the original analysis. In this situation,

having explanations of each preprocessing decision is important, as it may be less about

4.2 Visual design 40

executing the exact same code and more about replicating the decision rationale.

The third goal is to support comprehension and evaluation among Timeline readers.

During data preprocessing, data practitioners typically encode preprocessing decisions in

code. However, sharing the code alone will not necessarily make preprocessing information

accessible to those unfamiliar with the programming language(s). Even for those with fa-

miliarity, the encoded decisions may still feel inaccessible, as parsing through another data

practitioner’s preprocessing script can be challenging. Thus, getting these decisions out of

code—and into a practical and accessible format—is crucial for making them legible and open

to evaluation. The Smallset Timeline is designed to do just that, bringing key preprocessing

decisions into plain view with visuals and text.

At all stages in its life cycle, the Smallset Timeline is designed to serve a purpose, whether

it is for Timeline creators or readers. The aspects of its construction—that would serve less

of a meaningful purpose to do by hand—have been automated by the smallsets software

(see Chapter 5). Note that the design goals discussed above are intended design goals. The

findings from a focus group study, presented in Chapter 7, suggest that the utility of the

Smallset Timeline likely extends beyond the goals outlined in Table 4.1. The use cases

envisioned by focus group participants are discussed in Section 7.3.3.

4.2 Visual design

The Smallset Timeline was designed to be simple, practical, and accessible. The visualisation

is static in nature and compact in size, making it easier to save, print, and share. It uses a

familiar layout—the timeline—to present an ordered sequence of steps and familiar graphical

elements—such as tables, colour, and text—to explain what is happening in each step. This

section dives into the visual design of the Smallset Timeline, including in-depth discussions

on its three core visual components (Section 4.2.1) and four optional enrichment features

(Section 4.2.2).

4.2.1 Three core visual components

The Smallset Timeline has three core visual components. There is a Smallset, consisting of

a small set of rows (5-15), from the original dataset. It contains examples of preprocessing

changes. There are snapshots of the Smallset. These are taken at different moments in the

4.2 Visual design 41

preprocessing pipeline and plotted sequentially to form a timeline of steps. Each snapshot

visualises one or more preprocessing decisions and highlights dataset changes through colour.

There are captions, for the snapshots, that provide written descriptions of the data prepro-

cessing decisions. Figure 4.2 breaks down the example Smallset Timeline from Figure 4.1

into its three core visual components, to illustrate what a Smallset Timeline is comprised of.

Each visual component is discussed in detail below.

5 TRUE 20 196 5.92 9.25 NA 0.02

4 TRUE 22 199 2.69 9.69 0.76 NA

4 FALSE 36 114 4.09 7.99 1.54 -0.81

2 TRUE 27 129 5.2 NA NA -1.35

3 TRUE 31 161 4.84 6.74 1.24 1.22

C1 C2 C3 C4 C5 C6 C7 C8

2

47

54

75

92

C1 C2 C3 C4 C5 C6 C7 C8

Remove rows where C2 is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replace missing values in C6 and C8
with column means. Drop C7 because
there are too many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Create a new column, C9, by summing
C3 and C4.

Added Deleted Edited Unchanged

C1 C2 C3 C4 C5 C6 C7 C8

Remove rows where C2 is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replace missing values in C6 and C8
with column means. Drop C7 because
there are too many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Create a new column, C9, by summing
C3 and C4.

Added Deleted Edited Unchanged

C1 C2 C3 C4 C5 C6 C7 C8

Remove rows where C2 is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replace missing values in C6 and C8
with column means. Drop C7 because
there are too many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Create a new column, C9, by summing
C3 and C4.

Added Deleted Edited Unchanged

1) Smallset

2) snapshots

3) captions

Figure 4.2: The Smallset Timeline in Figure 4.1 broken down into its three core visual
components: the Smallset, snapshots, and captions. The Smallset consists of rows 2, 47, 54,
75, and 92 from s data, printed in full in Table A.1. Three sequential snapshots of the Smallset
highlight, with colour, example dataset changes, due to preprocessing. Three captions (one
for each snapshot) describe the preprocessing steps in more detail. See Section 4.2.1 for a
discussion on components.

The Smallset

A “Smallset” is a small set of observations (5-15) from the dataset of interest. The ob-

servations feature examples of dataset alterations due to preprocessing. The objective of a

Smallset is not to create a representative sample of the dataset and how often data alter-

4.2 Visual design 42

ations occur. Instead, the objective is to create a small dataset-like object that can be used

to visually explain the preprocessing steps, at a manageable scale for comprehension and

figure production. It is crucial to make this objective clear to Timeline readers, to avoid

misinterpretation of the Smallset and what it can and cannot say about the full dataset.

Throughout this section, it is assumed that the Smallset rows are given. However, in

practice the Smallset rows have to be selected from the dataset of interest. The Smallset

selection criteria and automated selection methods are discussed in Section 4.3. For datasets

with many columns, it may also be necessary to show only a subset of columns in the

visualisation, to keep the Smallset Timeline compact in size. The current design of the

Smallset Timeline is suited to tabular data only, meaning the Smallset has a table format.

Each observation is a row. Each attribute is a column, and there is no nested data structure

(e.g., lists or other key-value structures) in a cell.

Small tables like this have long been used in the programming community to explain

coding commands for data manipulation. For example, the cheatsheet for the R dplyr

package [Posit Software, PBC, 2023] uses little (empty) tables and colour to visually explain

to data scientists what happens to the data object when a dplyr command is applied to it.

There have also been online tools developed to teach programming commands through the

use of interactive table visualisations supplemented with outlining, colour, and arrows [Lau

et al., 2023]. With the Smallset, a similar technique is employed. However, now the focus

is on the decisions behind the programming command. Specifically, the technique is used to

demonstrate what happens to data as a result of data preprocessing decisions.

Snapshots

A snapshot is a picture of the Smallset at a particular moment in the data preprocessing

pipeline. The first and last snapshots are taken at the beginning and end of the data pre-

processing pipeline, respectively. In other words, every Smallset Timeline has at least two

snapshots. Snapshots in-between represent intermediary points in the preprocessing pipeline.

These intermediate snapshot points are selected by the Timeline creator (see Figure 4.3). The

snapshots are plotted sequentially in a timeline format.2 When plotted this way, the snap-

shots break the preprocessing pipeline down into digestible pieces and mirror the sequence

of programming instructions used to implement a data preprocessing strategy.

2For a horizontal Smallset Timeline, snapshots are arranged from left to right and can span multiple rows.
For a vertical Smallset Timeline, snapshots are arranged from top to bottom and can span multiple columns.

4.2 Visual design 43

Colours are used to highlight data changes between snapshots. This technique of colour-

encoding differences between two tables appears in exploratory data tools [Fitzpatrick et al.,

2023, Gaslam, 2021, Niederer et al., 2017, Tierney, 2017] and explanations of data trans-

formations [Kasica et al., 2021, Posit Software, PBC, 2023]. The colours used in Smallset

snapshots represent general changes undergone by a dataset: 1) it gets bigger, 2) it gets

smaller, or 3) it stays the same size, but the contents change. Thus, the scheme has four

categories: added, deleted, edited, and unchanged. It is limited to four, to minimise con-

sultation with the colour legend while reading a Smallset Timeline. Timeline creators can

choose a four-colour palette consistent with the visual style of their document. If a certain

type of change is not part of the preprocessing steps, the category is left off the legend (e.g.,

see Figure 6.1).

As noted above, Timeline creators are responsible for selecting snapshot points. This

selection will likely depend on the purpose of the Smallset Timeline (see Table 4.1). For

example, in Figure 4.3, Alice chooses to take snapshots showing exactly one operation at a

time. This approach emphasises the effects of each operation and helps prepare documen-

tation for reproducing or replicating the steps. Alternatively, Bob groups related operations

together as a composite preprocessing step. This approach conveys the conceptual outline

rather than the details of preprocessing. It is suited to mediums in which space and reader

attention span are limited (e.g., research article, white paper, or blog post). Note that if a

data point has been altered more than once since the last snapshot, the cell colour will reflect

the most recent change, i.e., one operation becomes hidden behind another. Here the choice

to prioritise simplicity and minimise visual clutter was made.

Originally, in addition to colour-coding, snapshots included stamps in table cells under-

going an addition, deletion, or edit. A stamp was a small circle containing a letter or symbol,

indicative of the data operation resulting in the data change. Figure 4.4 provides an example

of stamps, where the letter I stands for imputation. The stamps feature was dropped because

it added visual clutter. It was hard to select intuitive letters/symbols, and they had to be

explained in the caption, where the change was being explained anyway. One alternative to

stamps worth exploring is the option to assign colours to data operations more specific than

added, deleted, and edited. This is discussed briefly in Chapter 7 and has been flagged as

future work.

4.2 Visual design 44

C1 C2 C3 C4 C5 C6 C7 C8

Remove rows where C2 is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replace missing values in C6 and C8
with column means. Drop C7 because
there are too many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Create a new column, C9, by summing
C3 and C4.

Added Deleted Edited Unchanged

Alice takes
four snapshots.

Bob takes
three snapshots.

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C8 C9

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C8 C9 C1 C2 C3 C4 C5 C6 C8 C9

Figure 4.3: Diagram showing discretion in the selection of snapshot points. Alice generates
one snapshot for each preprocessing decision, while Bob combines two related decisions in the
second snapshot. Both sets of snapshots are based on the s data example (see Appendix A).

Figure 4.4: An example of the stamps visual feature, discarded early in the design process
of the Smallset Timeline, due to the non-intuitive visual clutter it added to snapshots. Here,
the letter I in the stamp stands for data imputation.

4.2 Visual design 45

Captions

Captions accompany snapshots to provide information about the preprocessing steps. There

is one caption per snapshot. Timeline creators are responsible for providing these captions,

which should supply Timeline readers with information that enhances their understanding

of the process. The caption text is usually located beneath snapshots. It can also be placed

to the left or right of a snapshot, if the Smallset Timeline is arranged vertically.

At the most basic level, a caption says what was done in the preprocessing step. The

colour categories for data changes are broad, so a caption allows the exact nature of the

change to be stated. From there, the caption can be upgraded to also explain why the

preprocessing step was done. Timeline creators can use the caption space to defend and

discuss their preprocessing decisions and offer rationale. A detailed explanation is especially

important if a decision deviates from a preprocessing norm. In some instances, it may be

necessary to also specify how the preprocessing step was done. This information can be

essential for Timeline readers trying to reproduce or replicate the preprocessing steps.

The caption style will depend on the purpose of the Smallset Timeline. To caption ap-

propriately for general comprehension and evaluation of preprocessing decisions (Table 4.1

column 3), jargon is avoided, and the text is pared back to the most relevant parts to pre-

vent information overload. For the purpose of reproducing or replicating data preprocessing

decisions (Table 4.1 column 2), snapshot captions may be detailed, include jargon, and ref-

erence preprocessing code. Timeline readers aiming to reproduce or replicate steps likely

have some familiarity with the topic, such that the amount and type of information are not

overwhelming. In short, the content of the captions should be tailored to the target audience

and the reason they need the information. Captioning for different audiences and purposes

is explored further in Section 6.1.

4.2.2 Four enrichment features

In addition to the three core visual components, the Smallset Timeline has four enrichment

features: printed data, missing data tints, ghost data, and resume markers. These are optional

features that can be activated to augment snapshots and provide more information about

the data or preprocessing pipeline. The utility of the enrichment features will depend on

data privacy, the application of interest, the preferences of the Timeline creator, and the

information needs of the Timeline reader.

4.2 Visual design 46

(A) Printed data (B) Missing data tints (C) Ghost data

Off

On

C1 C2 C3 C4 C5 C6 C7 C8

5

4

4

2

3

TRUE

TRUE

FALSE

TRUE

TRUE

20

22

36

27

31

196

199

114

129

161

5.92

2.69

4.09

5.2

4.84

9.25

9.69

7.99

6.74

0.76

1.54

1.24

0.02

−0.81

−1.35

1.22

C1 C2 C3 C4 C5 C6 C7 C8

5

4

196

2

3

TRUE

TRUE

5.92

TRUE

TRUE

20

22

9.25

27

31

199 2.69

129

161 4.84

−1.35

0.02

5.2

6.74

9.69

1.22

FALSE 114 7.994

1.24

0.76

1.54 −0.8136 4.09

 C1 C2 C3 C4 C5 C6 C8

−0.20...

10.01...2

5 TRUE 20

22

TRUE 27

4

196

199

3

129

TRUE

5.92

2.69

TRUE

5.2

4.84

9.25

9.69

31 161 6.74

0.02

−1.35

1.22

 C1 C2 C3 C4 C5 C6 C8

2

5 TRUE 20

22

TRUE 27

4

196

199

3

129

TRUE

5.92

2.69

TRUE

5.2

4.84

9.25

9.69

31

10.01...

6.74

0.02

−0.20...

161

−1.35

1.22

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C8 C1 C2 C3 C4 C5 C6 C8C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C8 C1 C2 C3 C4 C5 C6 C8

C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C8 C1 C2 C3 C4 C5 C6 C8C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C8 C1 C2 C3 C4 C5 C6 C8C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C7 C8 C1 C2 C3 C4 C5 C6 C8 C1 C2 C3 C4 C5 C6 C8

Figure 4.5: Overview of three of the four Smallset enrichment features. See Section 4.2.2 for
descriptions. Snapshots are based on s data, detailed in Appendix A.

For the first three enrichment features (i.e., printed data, missing data tints, and ghost

data), Figure 4.5 shows snapshots when the feature is not activated (“off”) versus activated

(“on”). Activating the feature means it will be applied in all snapshots in the Smallset

Timeline; it cannot be applied selectively to some snapshots or activated part way through

the Smallset Timeline. The fourth enrichment feature, resume markers, is illustrated in

Figure 4.6. Each is described in more detail below.

Printed data

Printed data (Figure 4.5, column A) can be included in Smallset snapshots for a glimpse of

the data and real examples of how it changes between steps.3 If reading a Smallset Timeline

to reproduce a dataset, printed values enable comparisons between the original dataset and

reproduced version. Even if preprocessing code appears to run successfully, having the printed

values might verify that the code still does what the original author intended it to do. If

3When this feature is activated, it may be necessary to truncate long data values to fit in the table cells.
The truncation is represented with an ellipsis (i.e., “...”).

4.2 Visual design 47

data are sensitive or not publicly available, the Smallset Timeline can be configured without

printed data. Note, though, that omitting the data does not necessarily guarantee data

privacy. One can imagine a scenario where identification in a dataset could occur based on

the unique combination of preprocessing operations undergone by certain observations.

Missing data tints

The “missing value shadow” [Swayne and Buja, 1998], or “shadow matrix” [Tierney and

Cook, 2023], is a visual technique that contrasts light and dark to reveal missing values in

a table of data.4 The Smallset Timeline draws inspiration from this technique, to highlight

missing data. However, instead of shadows, tints are used, i.e., missing data tints (Figure 4.5,

column B). A subtle tint makes the issue noticeable without diverting attention from other

visual elements or making it hard to see printed data in table cells. It also has metaphorical

value; part of the colour is missing, just like the data itself. If values are imputed, the table

cells are not filled with tints in subsequent snapshots.

When this enrichment feature is activated, the colour legend is updated accordingly. The

labels of colours with tints are tagged with an asterisk, that points to the note: A lighter

value indicates a missing data value (e.g., see Figure 6.1). One notable limitation of using

missing data tints is that the Smallset Timeline may no longer be colourblind safe, even if

the four-colour palette is. For instance, the snapshot in Figure 4.5 (column B, row “on”) is

not colourblind safe.

Ghost data

When row or column deletions are visualised in a Smallset, the Smallset table shrinks in size.

When this happens in a Smallset Timeline, it can become difficult to track individual data

points across the entire Smallset Timeline, as they shift in space relative to each other. The

ghost data enrichment feature (Figure 4.5, column C) provides the option to plot blank (i.e.,

“ghost”) rows and columns where data have been deleted. When ghost data are included,

the position of each table cell in a Smallset is maintained throughout the entire Smallset

Timeline. In turn, data can be readily traced across snapshots. Ghost data can also serve as

a visual reminder in all subsequent snapshots that data have been deleted in a previous step.

4A similar visualisation is also offered by the vis miss() command in the visdat R package [Tierney,
2017]. It plots an entire tabular dataset (as a grid of boxes) and colour-encodes the values as missing or not.

4.2 Visual design 48

C1 C2 C3 C4 C5 C6 C7 C8

Removed rows where C2
is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replaced missing values
in C6 and C8 with column
means. Dropped C7
because there are too
many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Created a new column,
C9, by summing C3 and
C4.

Ran the model but then
decided to make another
change to the dataset.

 C1 C10C2 C3 C4 C5 C6 C8 C9

Created a new
categorical column, C10,
based on C9 terciles.

Added Deleted Edited Unchanged

Figure 4.6: A Smallset Timeline (for the s data example detailed in Appendix A) with a
resume marker—the vertical bar after the third snapshot—an enrichment feature discussed
in Section 4.2.2.

The default setting in the smallsets software (discussed in Chapter 5) is to use ghost

data because it seems to make interpretation easier in many cases. However, it is optional,

as there are some situations where it might not be helpful or suitable. For example, if many

columns are deleted in the first snapshot (e.g., ten columns are deleted), it may be best

to deactivate ghost data. Doing so would avoid large blocks of white space in subsequent

snapshots and preserve space overall, keeping the figure compact in size.

Resume markers

Resume markers are the fourth enrichment feature. A resume marker is a vertical line placed

between two snapshots to denote that preprocessing was stopped to start the final estimation

or modelling task but then was subsequently “resumed” to make additional dataset changes.

A resume marker can have its own caption, just like a snapshot, to explain why preprocessing

resumed. The caption either sits below or beside the resume marker, depending on the layout

of the Smallset Timeline. Figure 4.6 is an example Smallset Timeline with a resume marker.

The resume marker enrichment feature is designed to be of use when discussing iterations

in more exploratory analyses or unexpected issues that necessitate modifying the initial

estimation/modelling plan. In the latter case, this enrichment feature is not meant to condone

any type of data dredging. Instead, it is designed to allow Timeline creators to be transparent

about unforeseen roadblocks—resulting in multiple attempts at estimation/modelling—and

revisions to the original estimation/modelling plan.

4.3 Methods for Smallset selection 49

4.3 Methods for Smallset selection

When the Smallset was introduced as the first core visual component in Section 4.2, the

row selection for a Smallset was treated as given, to focus on the overall design. This

section focuses on Smallset selection, and in particular, automated Smallset selection. Manual

selection of rows is technically an option, but it places the burden on Timeline creators to

find suitable rows. It is also subject to cherry picking, which may result in a misleading

visualisation.

The aim in Smallset selection is to find rows containing examples of preprocessing changes.

Random sampling is one way to automate Smallset selection, but it may not be effective,

especially if the number of Smallset rows is low or certain preprocessing changes occur infre-

quently. This creates a demand for other automated selection methods that can guarantee

rows with preprocessing examples. In turn, two optimisation models were developed for

Smallset selection. These models are introduced in Section 4.3.1 and tested in Section 4.3.2.

4.3.1 Two optimisation models

This section details the two optimisation models in Table 4.2, for automated Smallset selec-

tion: 1) the coverage model and 2) the coverage + variety model. The first model centres

around the selection criterion preprocessing coverage, which tries to ensure that the Small-

set contains at least one example for each preprocessing step (i.e., snapshot). The second

model centres around two criteria. This includes preprocessing coverage (like before) and

visual variety, which tries to ensure that a variety of changes are shown within and across

snapshots. Following is a discussion on the selection criteria, the selection models, and key

considerations in model development.

Data representations for the selection criteria

The first selection criterion is preprocessing coverage, which means a Smallset has at least

one example for each preprocessing step.5 Incorporating it into a selection model required

a new data representation: the coverage indicator matrix, denoted by C. Let the original

5Here, the terms step (as in preprocessing step) and snapshot (as in Smallset snapshot) are used inter-
changeably. In other words, if a Smallset Timeline has four snapshots, there are four preprocessing steps.
It is assumed that a step can consist of one or more preprocessing decisions, meaning a single snapshot can
show various preprocessing changes resulting from different preprocessing decisions.

4.3 Methods for Smallset selection 50

Coverage model Coverage + variety model

max
z

1

s.t.
N∑
i=1

zi = K

N∑
i=1

zicih > 0, ∀h = 1, . . . , H

max
z

z⊤Qz

s.t.
N∑
i=1

zi = K

N∑
i=1

zicih > 0, ∀h = 1, . . . , H

Table 4.2: Two optimisation models for Smallset selection, discussed in Section 4.3.1.

dataset, X, be an N×M matrix, where xij is the data value in the i-th row and j-th column.

Data matrix X goes through h = 1, . . . , H preprocessing steps, f1, . . . , fH , resulting in a

processed data matrix after each step, X̂h = fh . . . f1(X). The binary coverage indicator

matrix C ∈ {0, 1}N×H is N data points by H preprocessing steps. Each element cih is 1

if and only if the ith row is altered by preprocessing step fh and 0 otherwise. An example

coverage indicator matrix is presented in Figure 4.7(A).

The second selection criterion is visual variety, which means the Smallset includes rows

affected by the steps differently, to show a variety of changes within and across snapshots.

The data representation required to incorporate the visual variety criterion into a selection

model is the visual appearance matrix, denoted by A ∈ RN ′×M ′
. It is the size of the original

data matrix X plus any rows and/or columns added in preprocessing. Its elements aij ∈
{U,A,D,E} (corresponding to unchanged, added, deleted, and edited, respectively) encode

the last change undergone by a data cell, from the original data matrix X to the final data

matrix X̂H . An example visual appearance matrix is presented in Figure 4.7(B).

Coverage model

The coverage model for Smallset selection incorporates the selection criterion preprocessing

coverage (see Table 4.2). The output is an indicator vector z ∈ {0, 1}N , in which zi is 1 if

row i is selected and 0 otherwise. In the model, there are two constraints. The first is that

exactly K rows are selected out of the original N rows, i.e., the Smallset must be of the size

specified. The second is preprocessing coverage. For each step, the number of rows in the

coverage indicator matrix that preprocessing step h affects is computed, and this has to be

4.3 Methods for Smallset selection 51

Step1 Step2 Step3
2

6666666666664

3

7777777777775

1 0 1 1
2 0 1 1
3 1 0 0
4 1 0 0
5 0 1 1
...

...
...

...
98 0 1 1
99 1 0 0
100 0 1 1

A) Coverage indicator matrix.

C1 C2 C3 C4 C5 C6 C7 C8 C9
2

6666666666664

3

7777777777775

1 U U U U U E D E A
2 U U U U U U D U A
3 D D D D D D D D D
4 D D D D D D D D D
5 U U U U U U D E A
...

...
...

...
...

...
...

...
...

...
98 U U U U U U D U A
99 D D D D D D D D D
100 U U U U U U D U A

B) Visual appearance matrix.

Figure 4.7: Example data representations, generated for Smallset selection, for the s data
dataset and three-step preprocessing scenario, detailed in Appendix A. See the discussion on
data representations in Section 4.3.1.

greater than zero. The coverage model tries to satisfy the constraints without any additional

objective (hence, the max 1 term in Table 4.2). This is an integer linear program solved with

the Gurobi Optimizer software [Gurobi Optimization, LLC, 2022].

Coverage + variety model

The coverage + variety model for Smallset selection incorporates the preprocessing coverage

and visual variety criteria (see Table 4.2). A pre-calculated N×N distance matrix Q contains

the Hamming distance between the vectors of any two rows in the visual appearance matrix.

That is, qil =
∑

j d(aij, alj), with distance function d(·, ·) being 0 if the two values are the

same and 1 otherwise. The objective function z⊤Qz computes the total pair-wise Hamming

distance among the selected rows. Like in the coverage model, there are two constraints: 1)

the Smallset must be of size K and 2) there must be preprocessing coverage. In this model,

though, the objective is to maximise visual variety. It is an integer quadratic program also

solved with the Gurobi Optimizer software [Gurobi Optimization, LLC, 2022].

Key considerations in model development

Development of the selection models was an iterative process, involving trial and error. Three

key moments in model development are discussed below.

• Snapshots versus data values. Initially, model development started by considering

preprocessing changes at the data value level. The goal was to optimise the selection

4.3 Methods for Smallset selection 52

of rows with the most values changed (added, deleted, or edited). Imagine, though,

that the first preprocessing step includes a row deletion. Here, all values in the deleted

rows are considered “changed,” and those rows would be prioritised in selection. This

could result in a Smallset Timeline in which the entire Smallset disappears after the

first snapshot. In turn, the focus shifted from the data value level to the snapshot level,

eventuating in the selection criterion preprocessing coverage.

• No objective for the coverage model. The coverage model has no objective,

only two constraints. Before settling on no objective, though, different objectives were

tested. For example, one trialled objective was to maximise the number of changes

shown, by prioritising rows undergoing changes in multiple steps. Yet, when testing

this approach, the solutions were not preferable. For example, in one test, all selected

rows were undergoing a change in every step; however, they were all undergoing the

exact same set of changes, even though not all changed rows did, in the full dataset.

The repetition among rows wasted space and misled. Thus, it seemed preferable to set

no objective, only two constraints, and get a mix of rows.

• Development of two models. One notable shortcoming of the coverage model is

that, when a snapshot contains multiple types of preprocessing changes, representation

of the different changes is not guaranteed. The coverage model is only designed to ensure

at least one example change per snapshot. In turn, the coverage + variety model was

developed. It addresses the shortcoming noted above (with use of the visual variety

criterion) but at the cost of needing to compute and optimise with a distance matrix

Q, that is quadratic in the number of rows. This can result in long runtimes for large

datasets. Thus, both models are included as selection algorithms in the smallsets

software, discussed in Chapter 5.

4.3.2 Comparing selection methods

Each selection method was tested using the s data example, described in Appendix A. Fig-

ure 4.8 presents the test results for selecting K = 5 rows. The test shows that random

sampling fails to achieve preprocessing coverage.6 Selection with the coverage model satisfies

6Note that random sampling was used in Figure 4.1, where it happened to satisfy the preprocessing
coverage criterion, unlike in Figure 4.8. For selection, the seed in R was set to 145 in Figure 4.1 and 99 in
Figure 4.8.

4.4 Alternative text 53

Cell numbering indicates the last step
in which it was affected:

Step 1: filter rows with invalid value
Step 2: impute and remove missing data
Step 3: generate a new feature

Random sampling

2
2
2
2
2

2
3
3
3
3
3

C1 C2 C3 C4 C5 C6 C7 C8 C9

22

33

44

48

62

Coverage model

1 1 1 1 1 1

2
2
2
2
1 1

3
3
3
3

C1 C2 C3 C4 C5 C6 C7 C8 C9

27

42

95

96

99

Coverage + variety model

1

1

1

1

1

1

1

1

1

1

1

2

1

1
2
2
2
1

1

2
2
1

3
3
3

C1 C2 C3 C4 C5 C6 C7 C8 C9

3

32

80

97

99

C1 C2 C3 C4 C5 C6 C7 C8

Remove rows where C2 is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replace missing values in C6 and C8
with column means. Drop C7 because
there are too many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Create a new column, C9, by summing
C3 and C4.

Added Deleted Edited Unchanged

C1 C2 C3 C4 C5 C6 C7 C8

Remove rows where C2 is FALSE.

C1 C2 C3 C4 C5 C6 C7 C8

Replace missing values in C6 and C8
with column means. Drop C7 because
there are too many missing values.

 C1 C2 C3 C4 C5 C6 C8 C9

Create a new column, C9, by summing
C3 and C4.

Added Deleted Edited Unchanged

Figure 4.8: Smallsets selected by random sampling (left), the coverage model (middle), and
the coverage + variety model (right) for s data (see Appendix A). Shown for each selection
method is one Smallset snapshot with accumulated changes (indicated by cell color) across
the three preprocessing steps (indicated by the numbering of the cell). Row numbers refer
to those in the original dataset (see Table A.1).

the preprocessing coverage criterion. However, it does not satisfy the visual variety criterion;

it misses a data edit example in the second step and has visual repetition among the first four

rows. Selection with the coverage + variety model satisfies preprocessing coverage as well as

visual variety. There are three rows affected differently by the second step. There is also one

row with minimal changes, another positive by-product of the visual variety criterion and

coverage + variety model design. In Chapter 6, all three selection methods are used to build

example Smallset Timelines.

4.4 Alternative text

One key argument of this thesis is that visualisation is an effective way to make preprocessing

information accessible. However, visualisations are not accessible to those with visual impair-

ments, unless there is alternative (alt) text (i.e., a text description of an image’s content).

Thus, an alt text template was developed for the Smallset Timeline (Figure 4.9). When pop-

ulated, this alt text template outlines key features of the Smallset Timeline and individual

4.5 Summary 54

The Smallset Timeline, explaining how the dataset is preprocessed, consists
of [number of snapshots] Smallset snapshots. Data additions are [colour
name]. Data deletions are [colour name]. Data edits are [colour name].
Unchanged data is [colour name].

Snapshot 1 is [number of rows] rows by [number of columns] columns. The
columns, in order from left to right, are [column names]. [List each dataset
change, noting the colour and number of columns, rows, or cells affected].
The caption says “[snapshot caption].”

Snapshot [snapshot number] is [number of rows] rows by [number of
columns] columns. [List each dataset change, noting the colour and number
of columns, rows, or cells affected]. The caption says “[snapshot caption].”1, 2

1Repeat the previous block for all remaining snapshots
2If there is a resume marker, insert the following:
Between snapshots [snapshot number] and [snapshot number + 1], there is a
resume marker that says “[resume marker caption].”

Figure 4.9: Alt text template for Smallset Timelines. See Section 4.4 for discussion.

snapshots. The smallsets software, discussed in Chapter 5, automatically populates this

template and prints the text to the screen, at the request of software users. One key limita-

tion of the alt text template is that it is currently only in the English language. Moreover,

the template assumes that a Timeline reader knows what a Smallset Timeline is. A Timeline

creator may need to add more description regarding the figure layout and Smallset, to assure

these aspects of the image are clear to those using the alt text.

4.5 Summary

This chapter proposes a novel visualisation, the Smallset Timeline, for communicating data

preprocessing decisions. There are two defined users of the Smallset Timeline: the Timeline

creator and Timeline reader. For Timeline creators, the Smallset Timeline is designed to

encourage reflection and reflexivity, in regards to data preprocessing decisions. For Timeline

readers, the Smallset Timeline is designed to support the replication, comprehension, and

evaluation of data preprocessing decisions. The visualisation consists of three core visual

components, including the Smallset, snapshots, and captions. The visualisation also offers

four optional enrichment features, including printed data, missing data tints, ghost data, and

4.5 Summary 55

resume markers. Two optimisation models are available for automated Smallset selection:

the coverage model and the coverage + variety model. There is also support for generating

alt text for Smallset Timelines.

In the following chapter, the software tool for building Smallset Timelines, smallsets, is

introduced. Then, in Chapter 6, smallsets is used to build six example Smallset Timelines

for real-world datasets, in a series of data preprocessing case studies.

Chapter 5

smallsets: Software for Building

Smallset Timelines

This chapter presents the smallsets R package, an open-source software tool for building

Smallset Timelines. It is available on the Comprehensive R Archive Network (CRAN)1 and

licensed under the GNU General Public License v3.0.2 The smallsets codebase is also

housed on GitHub in a public repository.3 Although an R package, smallsets can be used

to produce Smallset Timelines for data preprocessing decisions encoded in the R or Python

programming languages in R, R Markdown, Python, or Jupyter Notebook files (extensions

.R, .py, .Rmd, or .ipynb, respectively).

The chapter begins by outlining the three design goals that shaped smallsets software

development (Section 5.1). Following, the frontend and backend of smallsets are discussed,

including the user interface and workflow (Section 5.2) and the package’s dependencies and

internal structure (Section 5.3). Section 5.4 considers how smallsets has evolved over time,

using three major smallsets software releases as reference points in time. Throughout, the

synthetic dataset s data—first appearing in Chapter 4—is used to illustrate different aspects

of the software. Details on s data can be found in Appendix A.

1https://CRAN.R-project.org/package=smallsets
2https://cran.r-project.org/web/licenses/GPL-3
3https://github.com/lydialucchesi/smallsets

56

https://CRAN.R-project.org/package=smallsets
https://cran.r-project.org/web/licenses/GPL-3
https://github.com/lydialucchesi/smallsets

5.1 Design goals 57

///

B) Console pane
Passing the script in
A to smallsets

A) Source pane
Data preprocessing script
(s_data_preprocess.R) with
smallsets structured comments

C) Plots pane
A Smallset Timeline,
output from the code
in B, that visualises
the script in A

Figure 5.1: Screenshot of a session in RStudio [Posit team, 2023], in which smallsets is used
to build a Smallset Timeline for the s data example (see Appendix A). In box A (red), there
is a data preprocessing script with smallsets structured comments, which is passed to the
Smallset Timeline() command in box B (blue), producing the figure in box C (green).

5.1 Design goals

There are three design goals that shaped development of smallsets. The first design goal is

that any additional work required to build a Smallset Timeline with smallsets—on top of

what is already required by the data preprocessing stage—should be minimised. The second

design goal is that any additional work that is required to build a Smallset Timeline with

smallsets should feel meaningful and productive to complete. The third design goal is that

building a Smallset Timeline with smallsets should be easily integrable into new or existing

data preprocessing workflows.

These design goals were grounded in the assumption that both users’ time and incentives

for producing preprocessing documentation would be low. In other words, the strategy was to

5.2 User interface and workflow 58

be pragmatic about the smallsets deployment context, to preemptively account for possible

barriers to uptake. As a result, the design goals centre on making smallsets simple and easy

to use. These three design goals laid the foundation for smallsets software development

and informed design choices, especially related to the user interface and workflow, which is

discussed next in Section 5.2.

5.2 User interface and workflow

To build a Smallset Timeline with smallsets, there are two main steps. First, users must in-

sert structured comments, with snapshot instructions, into their R, R Markdown, Python, or

Jupyter Notebook file containing the data preprocessing code (see Section 5.2.1). Next,

users must pass their un-preprocessed dataset and commented preprocessing file to the

Smallset Timeline() command in smallsets (see Section 5.2.2); the output is a Small-

set Timeline. Figure 5.1 shows these steps executed in an RStudio session [Posit team, 2023].

Each of the two main steps is detailed below.

5.2.1 Inserting structured comments

The first step in the smallsets user workflow is inserting structured comments into the R,

R Markdown, Python, or Jupyter Notebook file containing the data preprocessing code. The

structured comments contain instructions for smallsets on how to build the Smallset Time-

line. This is similar to docstrings [Goodger and van Rossum, 2001] in Python or roxygen2

comments [Wickham et al., 2020] in R, for generating function documentation.

In smallsets, there are two types of structured comments—snapshot comments and

resume marker comments—which are shown in Figure 5.2. Snapshot comments are required

to build a Smallset Timeline. Resume marker comments are only necessary if a Timeline

creator wants to include a resume marker enrichment feature in a Smallset Timeline (see

Section 4.2.2). The format of snapshot and resume marker comments is the same regardless

of whether the preprocessing code is in R or Python. Each comment type is discussed

separately below.

5.2 User interface and workflow 59

smallsets snap snap-place name-of-data-object caption[caption-text]caption

smallsets resume caption[caption-text]caption

n Required argument
n Optional argument

Snapshot comment

Resume marker comment

Figure 5.2: Format of snapshot and resume marker structured comments, with colour-coded
arguments.

Snapshot comments

Smallset Timelines always consist of, at a minimum, two snapshots. Therefore, users must

always include at least two structured snapshot comments in their script of code. A snapshot

comment tells the smallsets software where to take a snapshot of the Smallset, what data

object to take the Smallset snapshot in, and what the snapshot caption should be. All changes

made to the dataset between the first and last specified snapshot places will be tracked by

smallsets. Any code before or after these places will be ignored by smallsets. This means

that a user can have code related to different stages of the analysis (e.g., importing the data

or running a model) within the same script that is passed to smallsets.

The format of a snapshot comment is detailed in Figure 5.2. It includes three argu-

ments. The first argument, which is optional, is snap-place. The snap-place argument tells

smallsets where to take the snapshot. If unspecified, the snapshot is taken exactly where

the snapshot comment is located within the code. Alternatively, a user can specify the snap-

shot location one of two ways. They can use a plus sign to specify how many lines of code

later to take the snapshot; for example, +3 means take the snapshot after three more lines

of code. They can also choose to specify the line of code after which to take the snapshot;

for example, 17 means take the snapshot after the seventeenth line of code.

The snap-place argument aims to give users substantial flexibility in comment placement

within a script of code. Figure 5.3 shows two example preprocessing scripts—Script A and

Script B—for the s data dataset, with inserted snapshot comments. Both Scripts A and B

contain the same preprocessing code and produce the same Smallset Timeline (Figure 4.1).

However, the comment placement differs between them. In Script A, the comments are

5.2 User interface and workflow 60

dispersed throughout the preprocessing code. In Script B, the comments are confined to a

block at the top of the script, ahead of any code. Across the two scripts, we can see examples

of different ways to specify the snapshot place. Script A includes an example of no snap-place

argument (line 1), which results in a snapshot where the comment is located (this could also

be achieved by passing +0 to snap-place).

The second argument in the snapshot comment is name-of-data-object. This is a required

argument for all snapshot comments. It tells smallsets what data object to apply the

Smallset snapshot in. The value passed to this argument may change between the snapshot

comments in a preprocessing script, if a data practitioner assigns the data object being

preprocessed to a new name partway through the preprocessing pipeline.

The third argument is caption-text, for specifying the snapshot caption. Although tech-

nically optional (smallsets will run successfully without it), it is strongly recommended to

include a caption for each snapshot, as it is one of the three core visual components of the

Smallset Timeline (see Section 4.2.1). Regardless, it is always necessary to include the cap-

tion brackets, even if no text is included between them. The smallsets tool recognises some

Markdown syntax within the caption-text argument, such as italicising and bolding text with

single and double asterisks, respectively (e.g., Figure 6.1).

Resume marker comments

The second type of structured comment is the resume marker comment. It is only necessary

if a user wants to include a resume marker in a Smallset Timeline. As previously discussed

in Section 4.2.2, the resume marker enrichment feature is a vertical bar placed between two

snapshots (see Figure 4.6). It signals that data preprocessing was stopped to move on to the

next stage in the data preprocessing pipeline but then resumed to make additional dataset

changes.

Within a script, the resume comment must be located between two snapshot comments.

In other words, it cannot be the first or last structured comment in a script. Its format is

described in Figure 5.2. The format is similar to that of the snapshot comment but includes

only one optional argument, caption-text, which can be used to create a caption for the resume

marker. Unlike the snapshot comment, the resume comment does not include the snap-place

or name-of-data-object arguments. The location of the resume marker is determined by the

surrounding snapshot comments, and information about the data object is not needed.

5.2 User interface and workflow 61

Script A

1 # smallsets snap s_data caption[Remove rows where C2 is FALSE.]caption

2 s_data <- s_data[s_data$C2 == TRUE,]

3

4 # smallsets snap +2 s_data caption[Replace missing values in C6 and

5 # C8 with column means. Drop C7 because there are too many missing

6 # values.]caption

7 s_data$C6[is.na(s_data$C6)] <- mean(s_data$C6, na.rm = TRUE)

8 s_data$C8[is.na(s_data$C8)] <- mean(s_data$C8, na.rm = TRUE)

9 s_data$C7 <- NULL

10

11 # smallsets snap +1 s_data caption[Create a new column, C9, by summing

12 # C3 and C4.]caption

13 s_data$C9 <- s_data$C3 + s_data$C4
14

Script B

1 # smallsets snap 8 s_data caption[Remove rows where C2 is FALSE.]caption

2 # smallsets snap 13 s_data caption[Replace missing values in C6 and

3 # C8 with column means. Drop C7 because there are too many missing

4 # values.]caption

5 # smallsets snap 17 s_data caption[Create a new column, C9, by summing

6 # C3 and C4.]caption

7

8 # remove rows where C2 is false

9 s_data <- s_data[s_data$C2 == TRUE,]

10

11 # deal with missing data

12 s_data$C6[is.na(s_data$C6)] <- mean(s_data$C6, na.rm = TRUE)

13 s_data$C8[is.na(s_data$C8)] <- mean(s_data$C8, na.rm = TRUE)

14 s_data$C7 <- NULL

15

16 # create a new variable

17 s_data$C9 <- s_data$C3 + s_data$C4
18

Figure 5.3: Two example R preprocessing scripts (A and B) for s data, which consist of the
same code but illustrate different approaches to inserting structured comments for smallsets.
Both Scripts A and B produce the same three-snapshot Smallset Timeline (Figure 4.1),
despite different comment placement.

5.2 User interface and workflow 62

5.2.2 Figure production and customisation

The second step in the user workflow, after inserting structured comments in the preprocess-

ing code, is running the main smallsets command: Smallset Timeline(). This command

has two required arguments: data and code. Users pass the un-preprocessed dataset to

the data argument. The code argument requires the filename of the script (one of R, R

Markdown, Python, or Jupyter Notebook) with inserted structured comments. Listing 5.1

demonstrates the syntax for running this command for the s data example, where the s data

dataset is stored in a data frame called s data and the preprocessing code is housed the R

script s data preprocess.R. If the file is not located in the working directory, the file path

must also be included in the string passed to the code argument.

load smallsets

library(smallsets)

build a Smallset Timeline

Smallset_Timeline(data = s_data, code = "s_data_preprocess.R")

Listing 5.1: Example R code for running the main smallsets command for s data, where
the dataset is assigned to object s data and the preprocessing code with inserted structured
comments is in the file s data preprocess.R, located in the user’s working directory.

Prior to running the Smallset Timeline() command, users must ensure that all pack-

ages/libraries required by the preprocessing code are loaded in the current environment, as

smallsets must be able to re-execute the preprocessing code on the backend when the com-

mand is run. Note that, although smallsets executes a user’s preprocessing code on the

backend, the un-preprocessed dataset passed to data is not altered in any way by smallsets.

In other words, the dataset is still un-preprocessed after Smallset Timeline() is run. A

more detailed discussion about the backend of smallsets can be found in Section 5.3.

The Smallset Timeline() command can be run from within the preprocessing script

itself, i.e., the file passed to the code argument. This eliminates the need to create additional

files in one’s data analysis workflow. It is also useful in the case of R Markdown and Jupyter

Notebook files, which can mix code, plain text, and figures all in one file. For example, in R

Markdown one could create a hidden chunk of code at the top of the file, which produces the

Smallset Timeline and assigns it to an object. That object can then be printed anywhere in

the file and rendered as a figure in an R Markdown report.

There are also various optional arguments in Smallset Timeline(). They fall under

5.2 User interface and workflow 63

three main categories: 1) Smallset selection, 2) visual settings, and 3) alternative text (alt

text). All optional arguments are listed by category, in Table 5.1. Each optional argument

has a default setting for when the argument is not specified by a user. The table includes

pointers to example Smallset Timelines within this thesis, where the default setting was

changed. Each category of optional arguments is discussed in more detail below.

Smallset selection

The first category of arguments relates to Smallset selection. This includes the size of the

Smallset (rowCount) and the automated Smallset selection method (rowSelect). Within

smallsets, there are three automated selection methods available: 1) random sampling, 2)

the coverage model, and 3) the coverage + variety model (see Section 4.3). In smallsets,

the coverage and coverage + variety models are solved with the Gurobi Optimizer [Gurobi

Optimization, LLC, 2022] using the Gurobi’s R interface [Gurobi Optimization, LLC, 2021].

Users must obtain a Gurobi license4 and install Gurobi locally, to use these two automated

selection methods.

Other arguments include rowReturn and rowIDs. When set to TRUE, rowReturn prints

the row names/indices of the Smallset selection, to the console. The rowIDs argument accepts

a vector of row names/indices, for rows to include in the Smallset. These two arguments can

be used in tandem, to avoid having to re-select rows with each run of Smallset Timeline().

For example, if a user chooses the coverage+variety model for Smallset selection, they can

print the solution with rowReturn. Then, they can pass that solution to rowIDs in future

runs of Smallset Timeline(), to avoid re-selection and minimise overall runtime.

Visual settings

The second category of arguments relates to visual settings for the Smallset Timeline, as

there are various ways to customise the figure’s appearance. The argument colours offers

three built-in colour palettes to select from, or users can specify their own custom palette.

All three built-in palettes are colourblind safe. One of the palettes also works when converted

to grayscale, making it safe for black and white printing. This may be an important feature

for Smallset Timelines included as figures in academic publications, which readers may print

out in black and white to read.

4Gurobi offers free academic licenses.

5.2 User interface and workflow 64

Optional Smallset Timeline() arguments

Argument Description Default Example

Smallset selection

rowCount Number of Smallset rows Five Figure 6.2

rowSelect Automated Smallset selection method Random sampling Figure 6.1

rowReturn Print row numbers of selected Smallset
rows to the console

Do not print

rowIDs Rows to include in the Smallset None

Visual settings

ignoreCols Columns to exclude from the Smallset
Timeline visualisation

None Figure 6.3

colours Colour palette (built-in or custom) First built-in palette Figure 6.4

printedData Print data values in snapshots Not printed Figure 6.9

truncateData Truncate printed data values No truncation

ghostData Include blank rows and columns where
data have been deleted

Included Figure 6.3

missingDataTints Use colour tints to highlight missing
data values

Not used Figure 6.4

align Alignment of snapshots Horizontal

font Font of captions and labels Sans Figure 6.4

sizing Size of caption text, column text,
printed data values, legend icons/text,
resume markers, and snapshot cells

See sets sizing() Figure 6.9

spacing Caption space, column name rotation,
column name space, and number of
Smallset Timeline rows/columns

See sets spacing() Figure 6.3

labelling Colour of column names and printed
data

See sets labelling() Figure 6.8

Alt text

altText Print alt text to console Not printed

Table 5.1: Optional arguments in the Smallset Timeline() command, related to Smallset
selection, visual settings, and alt text. The Example column points to one Smallset Timeline
presented in this thesis where the default setting was changed (not exhaustive of all examples).

https://lydialucchesi.github.io/smallsets/reference/sets_sizing.html
https://lydialucchesi.github.io/smallsets/reference/sets_spacing.html
https://lydialucchesi.github.io/smallsets/reference/sets_labelling.html

5.2 User interface and workflow 65

Automated output Edited output

The Smallset Timeline, explaining how the dataset
is preprocessed, consists of 3 Smallset snapshots.
Data additions are mediumpurple2. Data deletions
are lightgoldenrod2. Data edits are skyblue2. Un-
changed data is gray89. Snapshot 1 is 5 rows by 8
columns. The columns, in order from left to right,
are C1, C2, C3, C4, C5, C6, C7, and C8. 1 row
is lightgoldenrod2. The caption says Remove rows
where C2 is FALSE.. Snapshot 2 is 4 rows by 8
columns. Column C7 is lightgoldenrod2. 3 cells are
skyblue2. The caption says Replace missing values
in C6 and C8 with column means. Drop C7 because
there are too many missing values.. Snapshot 3 is 4
rows by 8 columns. Column C9 is mediumpurple2.
The caption says Create a new column, C9, by sum-
ming C3 and C4..

The Smallset Timeline, explaining how the s data
datast is preprocessed, consists of three Smallset
snapshots, plotted in a horizontal line. In the Small-
set Timeline, data additions are purple. Data dele-
tions are yellow, and data edits are blue. Unchanged
data is light gray. The first Smallset snapshot is five
rows by eight columns. The columns, in order from
left to right, are C1, C2, C3, C4, C5, C6, C7, and
C8. One row in the snapshot is yellow, and the
caption says, “Remove rows where C2 is FALSE.”
The second snapshot is four rows by eight columns.
Column C7 is yellow, and three cells are blue. The
caption says, “Replace missing values in C6 and C8
with column means. Drop C7 because there are too
many missing values.” The third snapshot is four
rows by eight columns. A new column, C9, is pur-
ple. The caption says, “Create a new column, C9,
by summing C3 and C4.”

Table 5.2: Example alt text for the Smallset Timeline in Figure 4.1. The alt text on the left
is automated output from the smallsets software. The alt text on the right is a manually
edited version of the automated output on the left. This alt text assumes some familiarity
with Smallset Timelines and their design.

Several arguments in this category correspond to the enrichment features discussed in

Section 4.2.2. This includes printing data in snapshots (printedData), highlighting missing

values with colour tints (missingDataTints), and plotting blank rows and columns where

data have been deleted (ghostData). The ignoreCols argument accepts a character vector

of columns to exclude from the Smallset Timeline visualisation. There are also arguments to

adjust the snapshot alignment, text font/colour, and element sizing/spacing.

Alt text

The last category includes one argument: altText. When set to TRUE, smallsets produces

alt text for a Smallset Timeline. Specifically, smallsets populates the alt text template

introduced in Section 4.4 and prints it to a user’s console. Therefore, a Timeline creator does

not need to write alt text from scratch, as smallsets provides a first draft. Table 5.2 shows

example alt text for the s data example. The left side of Table 5.2 shows alt text returned

5.2 User interface and workflow 66

by smallsets. The right shows a version edited for improved grammar and clarity.

5.2.3 Resources for users

To teach the user interface and workflow of smallsets to users, several resources have been

developed. This includes example data and scripts, R help pages, a user guide, a cheatsheet,

and the smallsets website. Each is discussed briefly below.

Example data and scripts

The synthetic dataset s data, used throughout this chapter for illustration and detailed in

Appendix A, is included in smallsets. It is saved in the RData format (extension .rda),

assigned to the name s data, and lazy-loaded.5 There are six example preprocessing scripts

(for the s data object) included in smallsets. Three of the scripts produce the same Smallset

Timeline but are of different file types (.R, .Rmd, and .py). The other three demonstrate

variations in the use and placement of structured comments.

The example dataset and scripts are used to generate a series of quick start examples,

that can be run immediately upon installing smallsets. Listing 5.2 shows two quick start

examples. Because the example preprocessing scripts are located within the package itself,

they must be called with system.file() in the code argument.6

library(smallsets)

quick start example for an R file

Smallset_Timeline(data = s_data,

code = system.file("s_data_preprocess.R",

package = "smallsets"))

quick start example for an R Markdown file

Smallset_Timeline(data = s_data,

code = system.file("s_data_preprocess.Rmd",

package = "smallsets"))

Listing 5.2: Two quick start examples for smallsets, which use example data and
preprocessing files included in smallsets. The output from each is a Smallset Timeline.

5A user does not need to run the data() command to load it.
6The system.file() command [Wickham et al., 2022b] provides the correct pathway to the example

preprocessing file, regardless of where the package is installed on a user’s machine.

5.2 User interface and workflow 67

Help pages

Each external (i.e., public-facing) smallsets command7 has an R help page, with documen-

tation. These pages are bundled with the software and accessible in R through the help()

command or the ? operator (e.g., help(Smallset Timeline) or ?Smallset Timeline). R

help pages have seven sections: Description, Usage, Arguments, Details, Value, See Also, and

Examples. Together, these sections provide a comprehensive overview of a function, from its

purpose to its syntax to its output. All help pages for smallsets were generated with the

roxygen2 package [Wickham et al., 2020]. Specifically, the documentation was added directly

to the function source code files in roxygen2 comments, which generate the R documentation

files (.Rd) for the help pages.

User guide

In addition to R help pages, there is a smallsets user guide. It is available as a vignette

within the smallsets installation and can be accessed with vignette("smallsets"). It

is also available on the smallsets website.8 The user guide is written in R Markdown

and rendered as an interactive HTML document. The document is a blend of text, code

snippets, and example Smallset Timelines. It contains approximately 1400 words, over 15

example code snippets, and seven Smallset Timelines. The topics covered include supported

workflows, structured comments, Smallset selection, and figure customisation, to name a few.

Cheatsheet

Another popular user resource for R packages is cheatsheets [Posit Software, PBC, 2024].

Figure 5.4 is the smallsets cheatsheet, available on the smallsets website. As per cheat-

sheet style guidelines,9 it is a multi-column one-page PDF file. The smallsets cheatsheet

consists of seven different sections, featuring key components of the software, for quick ref-

erence. HTML cheatsheets were recently introduced; future work will involve adapting the

PDF in Figure 5.4 to this new format.

7This includes Smallset Timeline(), sets sizing(), sets spacing(), and sets labelling().
8https://lydialucchesi.github.io/smallsets/articles/smallsets.html
9https://github.com/rstudio/cheatsheets

https://lydialucchesi.github.io/smallsets/articles/smallsets.html
https://github.com/rstudio/cheatsheets

5.2 User interface and workflow 68

Sm
al

ls
et

_T
im

el
in

e(
da

ta
=
s_

da
ta

,
co

de
=
“s

_d
at

a_
pr

ep
ro

ce
ss

.R
”)

Sm
al

ls
et

 T
im

el
in

es
 w

ith
 sm

al
ls

et
s:

 :
CH

EA
T

SH
EE

T
sm

al
ls

et
s i

s a
 to

ol
 fo

r v
is

ua
lly

 d
oc

um
en

tin
g

an
d

co
m

m
un

ic
at

in
g

da
ta

 p
re

pr
oc

es
si

ng
 d

ec
is

io
ns

. I
t b

ui
ld

s
a

Sm
al

ls
et

 T
im

el
in

e
fig

ur
e

[3
] b

as
ed

 o
n

pr
ep

ro
ce

ss
in

g
co

de
 in

 a
n

R,
 R

 M
ar

kd
ow

n,
 P

yt
ho

n,
 o

r J
up

yt
er

 N
ot

eb
oo

k
fil

e.
 U

se
rs

 m
us

t f
irs

t a
dd

 st
ru

ct
ur

ed
 c

om
m

en
ts

, w
ith

bu

ild
in

g
in

st
ru

ct
io

ns
, t

o
th

e
pr

ep
ro

ce
ss

in
g

co
de

.

St
ru

ct
ur

ed
 c

om
m

en
ts

M
ai

n
fu

nc
tio

ns

St
ep

s t
o

bu
ild

 a
 S

m
al

ls
et

 T
im

el
in

e
Th

e
de

m
o

da
ta

se
t s
_d
at
a

an
d

pr
ep

ro
ce

ss
in

g
co

de
 s
_d
at
a_
pr
ep
ro
ce
ss
.R

ar
e

us
ed

 to
 il

lu
st

ra
te

 th
e

pr
oc

es
s.

Sm
al

ls
et

 se
le

ct
io

n

St
ru

ct
ur

e

sm
al

ls
et

s
sn

ap
pl

ac
e

da
ta

ca
pt

io
n[

te
xt

]c
ap

ti
on

Cu
st

om
is

at
io

n
St

ep
 1

Ad
d

st
ru

ct
ur

ed
 c

om
m

en
ts

 to
 th

e
pr

ep
ro

ce
ss

in
g

co
de

 in
 y

ou
r s

cr
ip

t,
sp

ec
ify

in
g

sn
ap

sh
ot

 p
oi

nt
s

an
d

ca
pt

io
ns

.

Fi
le

: s
_d
at
a_
pr
ep
ro
ce
ss
.R

St
ep

 2
Ru

n
th

e
m

ai
n

sm
al

ls
et

s
co

m
m

an
d

to
 b

ui
ld

 a
 S

m
al

ls
et

 T
im

el
in

e
fo

r y
ou

r
da

ta
se

t a
nd

 p
re

pr
oc

es
si

ng
 c

od
e.

De
m

o
da

ta
se

t a
nd

 c
od

e

S
m
a
l
l
s
e
t
_
T
i
m
e
l
i
n
e
(
d
a
t
a
,

c
o
d
e
,

.
.
.
)

bu
ild

s a
 S

m
al

ls
et

 T
im

el
in

e

se
ts
_s
iz
in
g(
)

fo
r a

dj
us

tin
g

siz
in

g
pa

ra
m

et
er

s,
in

cl
ud

in
g

co
lu

m
n

na
m

es
, c

ap
tio

n
te

xt
, s

na
ps

ho
t d

at
a,

 a
nd

 le
ge

nd
 it

em
s

se
ts
_s
pa
ci
ng
()

fo
r a

dj
us

tin
g

sp
ac

in
g

pa
ra

m
et

er
s,

in
cl

ud
in

g
ca

pt
io

n
sp

ac
e,

co

lu
m

n
na

m
e

ro
ta

tio
n,

 a
nd

 n
um

be
r o

f f
ig

ur
e

ro
w

s

se
ts
_l
ab
el
li
ng
()

fo
r a

dj
us

tin
g

th
e

co
lo

ur
s o

f t
he

 c
ol

um
n

na
m

es
 a

nd
 sn

ap
sh

ot
 d

at
a

Re
fe

re
nc

es
CR

AN
 re

fe
re

nc
e

m
an

ua
l

cr
an

.r-
pr

oj
ec

t.o
rg

/w
eb

/p
ac

ka
ge

s/
sm

al
ls

et
s/

sm
al

ls
et

s.
pd

f

sm
al

ls
et

s
U

se
r G

ui
de

ly
di

al
uc

ch
es

i.g
ith

ub
.io

/s
m

al
ls

et
s/

ar
tic

le
s/

sm
al

ls
et

s.
ht

m
l

in
cl

ud
ed

 in
 th

e
pa

ck
ag

e
:
vi
gn
et
te
(“
sm
al
ls
et
s”
)

Sm
al

ls
et

 T
im

el
in

es
: A

 V
is

ua
l R

ep
re

se
nt

at
io

n
of

 D
at

a

Pr
ep

ro
ce

ss
in

g
D

ec
is

io
ns

pa
pe

r p
ro

vi
di

ng
 a

 d
et

ai
le

d
di

sc
us

si
on

 o
f S

m
al

ls
et

 T
im

el
in

es
,

th
e

Sm
al

ls
et

 se
le

ct
io

n
op

tim
is

at
io

n
pr

ob
le

m
s,

 a
nd

 tw
o

ca
se

st

ud
ie

s w
ith

 e
xa

m
pl

e
Sm

al
ls

et
 T

im
el

in
es

do

i.o
rg

/1
0.

11
45

/3
53

11
46

.3
53

31
75

Sy
nt

he
tic

 d
at

as
et

s_
da
ta

10
0

ob
se

rv
at

io
ns

 a
nd

 e
ig

ht
 v

ar
ia

bl
es

 (C
1-

C8
)

Pr
ep

ro
ce

ss
in

g
sc

rip
ts

s_
da
ta
_p
re
pr
oc
es
s.
R

pr
ep

ro
ce

ss
in

g
sc

en
ar

io
 in

 R
s_
da
ta
_p
re
pr
oc
es
s.
Rm
d

pr
ep

ro
ce

ss
in

g
sc

en
ar

io
 in

 R
 M

ar
kd

ow
n

s_
da
ta
_p
re
pr
oc
es
s.
py

pr
ep

ro
ce

ss
in

g
sc

en
ar

io
 in

 P
yt

ho
n

s_
da
ta
_p
re
pr
oc
es
s_
bl
oc
k.
R

sh
ow

s a
lte

rn
at

iv
e

co
m

m
en

t p
la

ce
m

en
t

s_
da
ta
_p
re
pr
oc
es
s_
4.
R

in
cl

ud
es

 a
dd

iti
on

al
 sn

ap
sh

ot
s_
da
ta
_p
re
pr
oc
es
s_
re
su
me
.R

in
cl

ud
es

 re
su

m
e

m
ar

ke
r

To
 c

us
to

m
is

e
th

e
in

fo
rm

at
io

n
in

 a
 S

m
al

ls
et

 T
im

el
in

e
an

d
its

 a
pp

ea
ra

nc
e,

 y
ou

 c
an

 se
t d

iff
er

en
t p

ar
am

et
er

s i
n

th
e
Sm

al
ls

et
_T

im
el

in
e(

)
co

m
m

an
d.

 S
ee

 [1
] f

or

th
e

co
m

pl
et

e
lis

t o
f p

ar
am

et
er

s.

co
lo
ur
s
=

1
2

3

l
i
s
t
(

a
d
d
e
d
=
"
#
5
B
A
2
A
6
"
,

d
e
l
e
t
e
d
=
"
#
B
C
D
2
E
E
"
,

e
d
i
t
e
d
=
"
#
C
0
F
F
3
E
"
,

u
n
c
h
a
n
g
e
d
=
"
#
C
D
C
D
B
4
”
)

co
lo

ur
 b

lin
d

sa
fe

B&
W

 p
rin

te
r f

rie
nd

ly
✓

✓
✓

✓

bu
ilt

-in
 p

al
et

te
s

ro
wC

ou
nt

nu
m

be
r o

f S
m

al
ls

et
 ro

w
s (

5-
15

)

ro
wS

el
ec

t
Sm

al
ls

et
 ro

w
 se

le
ct

io
n

m
et

ho
d

=
1
→

 c
ov

er
ag

e
m

od
el

 (G
ur

ob
i r

eq
ui

re
d)

=
2
→

 c
ov

er
ag

e
+

va
rie

ty
 m

od
el

 (G
ur

ob
i r

eq
ui

re
d)

=
NU

LL
→

 r
an

do
m

 sa
m

pl
in

g

sm
al

ls
et

s
v2

.0
.0

–
CR

AN
.R

-p
ro

je
ct

.o
rg

/p
ac

ka
ge

=s
m

al
ls

et
s

 –
CC

 B
Y

SA
 L

yd
ia

 R
. L

uc
ch

es
i,

Pe
tr

a
M

. K
uh

ne
rt

, J
en

ny
 L

. D
av

is
, L

ex
in

g
Xi

e
 –

De
ce

m
be

r 2
02

3

W
ar

ni
ng

. T
hi

s m
et

ho
d

ha
s l

on
g

ru
nt

im
es

 fo
r

la
rg

e
da

ta
se

ts
. S

ee
 [2

] f
or

w

or
ka

ro
un

ds
.

pr
in
te
dD
at
a
=
TR
UE

sh
ow

 th
e

da
ta

 v
al

ue
s i

n
Sm

al
ls

et
 sn

ap
sh

ot
s

gh
os
tD
at
a
=
TR
UE

pl
ot

 b
la

nk
 ro

w
s/

co
lu

m
ns

 a
fte

r d
at

a
de

le
tio

ns

mi
ss
in
gD
at
aT
in
ts
 =
 T
RU
E

us
e

co
lo

ur
 ti

nt
s t

o
hi

gh
lig

ht
 m

is
si

ng
 d

at
a

To
 se

le
ct

 th
e

sm
al

l n
um

be
r o

f r
ow

s f
ro

m
 th

e
or

ig
in

al
 d

at
as

et
 u

se
d

in
 th

e
vi

su
al

is
at

io
n,

 y
ou

 c
an

 u
se

 o
ne

 o
f t

hr
ee

 se
le

ct
io

n
m

et
ho

ds
 a

va
ila

bl
e

in
 th

e
Sm

al
ls

et
_T

im
el

in
e(

)
co

m
m

an
d.

[1
]

[2
]

[3
]

Th
e

sm
al

ls
et

s p
ac

ka
ge

 c
om

es
 w

ith
 e

xa
m

pl
e

da
ta

 a
nd

pr

ep
ro

ce
ss

in
g

co
de

, w
hi

ch
 a

re
 u

se
d

to
 il

lu
st

ra
te

 h
ow

 th
e

pa
ck

ag
e

w
or

ks
, s

uc
h

as
 in

 th
e

ne
xt

 se
ct

io
n.

Th
re

e
pl

ac
e

ar
gu

m
en

t o
pt

io
ns

:

1.
Th

e
lin

e
of

 c
od

e
af

te
r w

hi
ch

 to
 ta

ke
 th

e
sn

ap
sh

ot
 (e

.g
., 7

 m
ea

ns

ta
ke

 a
fte

r l
in

e
7)

2.
A

pl
us

 si
gn

 a
nd

 th
e

nu
m

be
r o

f l
in

es
 o

f c
od

e
af

te
r w

hi
ch

 to
 ta

ke
 th

e
sn

ap
sh

ot
 (e

.g
., +

2
m

ea
ns

 ta
ke

 a
fte

r t
he

 n
ex

t t
w

o
lin

es
)

3.
No

 a
rg

um
en

t m
ea

ns
 ta

ke
 th

e
sn

ap
sh

ot
 d

ire
ct

ly
 a

fte
r t

he
 c

om
m

en
t

an
d

be
fo

re
 th

e
ne

xt
 li

ne
 o

f c
od

e

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

R
em

ov
e

ro
w

s
w

he
re

C
2

is
FA

LS
E.

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

R
ep

la
ce

m
is

si
ng

va
lu

es
in

C
6

an
d

C
8

w
ith

co
lu

m
n

m
ea

ns
.D

ro
p

C
7

be
ca

us
e

th
er

e
ar

e
to

o
m

an
y

m
is

si
ng

va
lu

es
.

C

1
C

2
C

3
C

4
C

5
C

6
C

8
C

9

C
re

at
e

a
ne

w
co

lu
m

n,
C

9,
by

su
m

m
in

g
C

3
an

d
C

4.

Ad
de

d

D
el

et
ed

Ed

ite
d

U

nc
ha

ng
ed

✓

F
ig
u
re

5.
4:

T
h
e
s
m
a
l
l
s
e
t
s
ch
ea
ts
h
ee
t,
av
ai
la
b
le

on
th
e
s
m
a
l
l
s
e
t
s
w
eb
si
te
.

5.3 Package architecture 69

Website

There is also a smallsets website that centralises the resources discussed above.10 It is built

with pkgdown [Wickham et al., 2022a], which turns R package documentation into a website,

and hosted through GitHub pages. The website makes information about smallsets readily

available, without having to install smallsets in R. Additionally, it can house resources not

permitted in the software installation itself, e.g., the cheatsheet (Figure 5.4).

5.3 Package architecture

Section 5.2 focused on the steps a smallsets user would follow to build a Smallset Timeline.

This section focuses on what happens on the backend of smallsets to produce a Smallset

Timeline, based on user inputs. Key software dependencies are first outlined in Section 5.3.1,

before the backend process is detailed in Section 5.3.2. Unit testing is covered in Section 5.3.3.

5.3.1 Dependencies

The smallsets R package depends on R version ≥3.5.0 [R Core Team, 2023]. It also has

ten direct R package dependencies.11 These packages must be installed alongside smallsets,

for it to work. They are as follows: callr [Csárdi and Chang, 2022], colorspace [Zeileis

et al., 2020], flextable [Gohel and Skintzos, 2023], ggplot2 [Wickham, 2016], ggtext [Wilke

and Wiernik, 2022], knitr [Xie, 2023], patchwork [Pedersen, 2023], plotrix [Lemon, 2006],

reticulate [Ushey et al., 2023], and rmarkdown [Allaire et al., 2023]. It is worth noting

that each of those ten dependencies has their own set of dependencies, which smallsets

then indirectly relies on. Figure 5.5 visualises the tree network of direct and indirect package

dependencies for smallsets.

One dependency not visualised in Figure 5.5 is the gurobi R package [Gurobi Optimiza-

tion, LLC, 2021]. This package is required when using either the coverage model or coverage

+ variety model for Smallset selection (see Section 4.3.1). The gurobi package is not avail-

able from a central repository. Rather, it is located in a user’s local Gurobi installation and

must be installed from there. Thus, gurobi is included under the Suggests category in the

10https://lydialucchesi.github.io/smallsets
11They are referred to as Imports in the package’s DESCRIPTION metadata file.

https://lydialucchesi.github.io/smallsets

5.3 Package architecture 70

MASS

Matrix

Rcpp

RcppTOML

askpass

bslib

cachem

callr

cli

colorspace

crayon

crul

data.table

digest

ellipsis

evaluate

fansi

flextable

fontawesome

fontquiver

fs

gdtools

gfonts

ggplot2 ggtext

glue

graphics

grid gridtext

gtable

here

highrhtmltools

httpuv

isoband

jquerylib

jsonlite

knitr

labeling

later

lattice

lifecycle

markdown

memoise

methods

mgcv

mimemunsell
nlme

officer

openssl

patchwork

pillar

pkgconfig

plotrix

processx

promises

ps

ragg

reticulate

rlang

rmarkdown

sass

scales

shiny

smallsets

splines

stats

stringi

stringr

textshaping

tibble

tinytex

triebeard

urltools

vctrs

withr xfun

xml2

xtable

grDevices
utils

sys

base64enc

fastmap

R6

curl

httpcode

uuid

fontBitstreamVera

fontLiberation

systemfonts

tools

jpeg

png

rprojroot

yaml

commonmark

zip

utf8

magrittr

rappdirs

RColorBrewer

farver

viridisLite

sourcetools

Direct import
Default loaded
Indirect dependency

Figure 5.5: Tree network of smallsets dependencies, distinguishing between R packages that
are direct imports in smallsets, default-loaded in an R session, and indirect dependencies of
smallsets. Graph based on data from a dependency report produced with pkgnet [Burns
et al., 2021].

package’s DESCRIPTION metadata file, which means it is only required for optional func-

tionality in smallsets. If a user attempts to use one of the optimisation models without the

Gurobi R package installed, they are prompted with installation instructions.

5.3.2 Internal structure

As outlined in Section 5.2, smallsets users must supply two inputs to the main user-

facing command, Smallset Timelime(), to build a Smallset Timeline. This includes an

un-preprocessed dataset and preprocessing script with inserted structured comments. Fol-

lowing is an overview of the processing that occurs behind the scenes to transform these user

5.3 Package architecture 71

inputs into a Smallset Timeline. This overview does not detail every aspect of the smallsets

source code but rather the most important parts. The processing can be divided into four

key steps: 1) selecting the Smallset, 2) taking snapshots, 3) detecting data changes, and 4)

building the plot. These steps are summarised in Table 5.3 and rely on a series of internal

smallsets functions, visualised in Figure 5.6.

add_ghost_data

build_plot

finalise_plot

find_data_changes

generate_alt_text

prepare_colour_sheet

prepare_score_sheet

retrieve_dimensions

retrieve_tables

return_scheme

run_advanced_gurobi

run_simple_gurobi

select_smallset

sets_labelling

sets_sizing

sets_spacing

Smallset_Timeline

write_smallset_code

Function Type

Internal

External

Lines of Code

100

200

300

400

Edge Type

Interdependency

Default argument

Figure 5.6: Network graph of the smallsets functions, showing interdependencies
among both internal and external functions. Dashed edges pointing out from the
Smallset Timeline() node highlight three external functions serving as default arguments
for three of the arguments in Smallset Timeline() (see Table 5.1). The lines of code value
does not include lines of roxygen2 comments for function documentation.

Step 1: Select the Smallset

The first key step is to select a set of Smallset rows, one of three ways, based on the user’s

method of choice: random sampling, the coverage model, or the coverage + variety model

(see Section 4.3.1). The random sampling approach is straightforward. Selection with an

optimisation model is more involved. In Figure 5.6, we can see on the left side of the network

a web of internal functions related to the optimisation models. The models are solved with

5.3 Package architecture 72

1. Select the Smallset 2. Take snapshots 3. Detect data changes 4. Build the plot

The Smallset rows are
selected with the spec-
ified method. If the
coverage model is spec-
ified, a coverage indica-
tor matrix is first gen-
erated (see Figure 4.7).
If the coverage + variety
model is specified, a cov-
erage indicator matrix
and visual appearance
matrix are first gener-
ated (see Figure 4.7).

Based on the structured
comments, the prepro-
cessing code is supple-
mented with snapshots
of the Smallset rows
(data frames are ap-
pended to a list object)
and turned into a func-
tion (see Listing 5.3).
The dataset is passed to
the function as an argu-
ment, and a list of snap-
shots is returned.

Two adjacent snapshots
are compared at a time
(i.e., one vs. two, two vs.
three, etc.), to search
for differences between
them. In the first of
the two snapshots, data
values are labelled as
deleted, where applica-
ble. In the second, data
values are labelled as
added or edited, where
applicable.

Each element in the
snapshot list is trans-
formed into a snapshot
plot. The snapshot cap-
tions are added to the
plots. These individual
snapshot plots are then
assembled into a single
plot object: the Smallset
Timeline. The alt text
template is populated
with information about
the Smallset Timeline.

Table 5.3: The four key backend steps—behind the main Smallset Timeline() command—
summarised. See Section 5.3.2 for a full discussion.

either run simple gurobi() or run advanced gurobi(), which call other functions to pre-

pare data representations required by the models. For example, run simple gurobi() calls

prepare score sheet() to prepare the coverage indicator matrix required by the coverage

model (see Figure 4.7). Once selected, the Smallset is represented by a vector of row names,

if the preprocessing code is in R, and by a vector of indices, if the preprocessing code is in

Python. These values can be used to access the Smallset within the full dataset, where each

row is identified by its unique row name or index.

Step 2: Take snapshots

The user’s preprocessing script, passed to the code argument, is read into R as a character

vector. Each line in the file becomes an element in the vector. The elements are strings

of R or Python syntax (depending on the user’s preprocessing code). For R and Python

files (.R and .py, respectively), the base R command readLines() can be used to read in

the code. R Markdown and Jupyter Notebook files (.Rmd and .ipynb, respectively) require

some additional formatting during import, which is achieved with the help of functions in

knitr [Xie, 2023], callr [Csárdi and Chang, 2022], and rmarkdown [Allaire et al., 2023].

Snapshots are inserted as new elements in the vector. The snapshots are strings of

R/Python syntax, appending a Smallset data frame12 to a list object (see Listing 5.3). Strings

12A data frame is a basic two-dimensional data structure in R.

5.3 Package architecture 73

containing the R/Python syntax for writing a function (e.g., “apply code <- function()

{”) are also inserted at the beginning and end of the vector. The vector is written to a

temporary R/Python file (.R/.py, respectively), at which point the strings become working

code again. The function in the temporary file can then be sourced into R,13 and the data

object is passed to it, to obtain the list of Smallset snapshots. Listing 5.3 shows the internal

snapshot-taking function, for the s data example.

The function called write smallset code() is responsible for generating the snapshot-

taking function. As depicted in Figure 5.6, write smallset code() is also called when using

an optimisation model for Smallset selection. This is because snapshots of the dataset are

required to prepare the input matrices for those models. Therefore, write smallset code()

is designed to take snapshots of either the entire dataset or the Smallset rows, so that it can

be used for either task.

snapshots <- list()

apply_code <- function(s_data) {

smallsets snap s_data caption[Remove rows where C2 is FALSE.]caption

snapshots [[1]] <- s_data [(row.names(s_data) %in% c("2", "47", "54", "75", "92")),]

s_data <- s_data[s_data$C2 == TRUE,]

smallsets snap +2 s_data caption[Replace missing values in C6 and

C8 with column means. Drop C7 because there are too many missing

values.]caption

s_data$C6[is.na(s_data$C6)] <- mean(s_data$C6, na.rm = TRUE)

s_data$C8[is.na(s_data$C8)] <- mean(s_data$C8, na.rm = TRUE)

snapshots [[2]] <- s_data [(row.names(s_data) %in% c("2", "47", "54", "75", "92")),]

s_data$C7 <- NULL

smallsets snap +1 s_data caption[Create a new column, C9, by summing

C3 and C4.]caption

s_data$C9 <- s_data$C3 + s_data$C4
snapshots [[3]] <- s_data [(row.names(s_data) %in% c("2", "47", "54", "75", "92")),]

return(snapshots)

}

Listing 5.3: The internal snapshot-taking function generated by smallsets for the s data
example, where 2, 47, 54, 75, and 92 refer to the Smallset row names. Purple lines of code
indicate those added by smallsets, to the preprocessing code supplied by the user.

Step 3: Detect data changes

The third step is detecting data changes between snapshots. Two snapshots are compared

at a time, starting with the first and second snapshot, then the second and third snapshot,

13To source a Python function in R, the reticulate package [Ushey et al., 2023] is used.

5.3 Package architecture 74

and so on. Prior to the comparison, the snapshot data frames are converted to flextable

objects [Gohel and Skintzos, 2023]. The flextable object is convenient for this step, as

colours can be assigned to data points in a data frame. Specifically, colour information is

stored as a separate data frame of hex colour codes within the flextable. This flextable

configuration is used to assign the colours highlighting data changes, to affected data points.

The comparison between two snapshots is based on row and column names. Rows and

columns are checked for data additions and deletions. Individual data points are checked

for edits.14 During each comparison, the data frame of hex colour codes is updated, if a

difference is detected. Note that—unlike a data addition or a data edit—a data deletion is

highlighted in the first of the two compared snapshots, where there is still a row/column in

the Smallset to highlight with colour.15

Step 4: Build the plot

In the fourth step, any column passed to ignoreCols (see Table 5.1) is removed from the

flextable objects. The data frames of hex colour codes are extracted from the flextable

objects and transformed into the snapshot plots. The snapshot plots are constructed individ-

ually as tile plots, using geom tile() from ggplot2 [Wickham, 2016]. Captions are added

to the snapshot plots, using geom textbox() from ggtext [Wilke and Wiernik, 2022]. Using

patchwork [Pedersen, 2023], the individual snapshot plots are assembled into a single plot

object: the Smallset Timeline.

5.3.3 Unit testing

The smallsets development workflow includes unit testing, to better detect when changes to

software dependencies or source code introduce bugs or errors. Thirty-one tests were written

for smallsets using testthat [Wickham, 2011], an R package providing support for unit

testing in R software development. The tests compare an output/action, from some part of

14Presently, smallsets will not detect changes in variable types (e.g., a character variable is changed to
a factor variable), if the change in variable type does not change the data values. In future versions of
smallsets, consideration can be given to showing changes in variable types.

15Future versions of smallsets could be altered to instead highlight data deletions in the second of the
two compared snapshots, by inserting previously deleted rows/columns back into the Smallset table for one
additional snapshot, such that they could be visually highlighted with colour. This approach might be more
intuitive for Timeline creators and readers. Ultimately, though, the best approach to showing data deletions
can be determined by data/feedback collected through a smallsets user study.

5.4 The evolution of smallsets 75

the smallsets source code, with an expected value/outcome. The tests are included in the

smallsets codebase on GitHub and run automatically each time the package is compiled

locally. They are diverse and span all four steps in Table 5.3. For example, one test checks

that a data deletion is accurately detected in a snapshot, while another checks that the R

Markdown quick start example produces output, without an error. In total, the test coverage

is 80.96%. This value was calculated with the covr package [Hester, 2023] and means that

approximately 80% of the source code is executed across the 31 tests.

5.4 The evolution of smallsets

Software development for smallsets began in 2020. Since then, smallsets has continued to

evolve, undergoing significant revision at times, especially in regards to the user interface and

workflow. This section discusses these revisions, using three major releases of the smallsets

software—introduced in Section 5.4.1—as reference points in time. The discussion is not

comprehensive of all changes to the smallsets source code. Commits to the smallsets

GitHub repository do, however, provide a comprehensive log of smallsets changes.16

5.4.1 Development history

To date, there have been three major releases of the smallsets software. These releases are

summarised in Table 5.4. The first release, v0.0.1.9000, was in November 2022 and is referred

to as R1-V0. The second release, v1.0.0, was in February 2023 and is referred to as R2-V1.

The third release, v2.0.0, was in December 2023 and is referred to as R3-V2. Each release

included substantial revision to the smallsets software. R3-V2 is the version used to build

all Smallset Timelines in this thesis.

As indicated in Table 5.4, R2-V1 and R3-V2 are published on the Comprehensive R

Archive Network (CRAN), a central repository for R packages. To be published on CRAN, a

package must adhere to all CRAN policies;17 compile without any warning messages or errors;

and follow best practices for R package development.18 Submissions must be reviewed and

approved by a member of the CRAN team, prior to acceptance to the CRAN repository. Once

16https://github.com/lydialucchesi/smallsets
17https://cran.r-project.org/web/packages/policies.html
18Best practices for R package development are outlined in Wickham and Bryan [2023].

https://github.com/lydialucchesi/smallsets
https://cran.r-project.org/web/packages/policies.html

5.4 The evolution of smallsets 76

Label Version Date Code URL

R1-V0 v0.0.1.9000 November 2022 [GitHub]
R2-V1 v1.0.0 February 2023 [CRAN] & [GitHub]
R3-V2 v2.0.0 December 2023 [CRAN] & [GitHub]

Table 5.4: Information about the three major releases of the smallsets software (see Sec-
tion 5.4.1). Section 5.4 uses labels R1-V0, R2-V1, and R3-V2 to refer to the releases.

on CRAN, packages are tested on thirteen different check flavors (different combinations of

R versions, operating systems, compilers, etc.) on a regular basis. In short, R packages must

meet and maintain certain standards to be hosted on CRAN, ensuring a certain standard of

quality for users and easier installation with the install.packages() command.

5.4.2 Streamlining the user interface and workflow

Section 5.2 described the user workflow: 1) insert structured comments and 2) run the

Smallset Timeline() command. However, this two-step workflow in R3-V2 looks signifi-

cantly different than the workflow in R1-V0. With each new release of smallsets, the aim

has been to improve the user interface and workflow, to make the tool more intuitive and

streamlined to use. Following is an outline of how the user interface and workflow have

evolved across the three major software releases: R1-V0, R2-V1, and R3-V2 (see Table 5.4).

The first release, R1-V0, had a four-step workflow that required users to 1) add struc-

tured comments, 2) run a command called prepare smallset(), 3) complete an R Mark-

down caption template, and 4) run a command called create timeline(). As shown in

the top script in Figure 5.7, the structured comments in R1-V0 centred around a series of

instructions—start, snap, and end—which were associated with specific snapshot locations.

The start and end comments took the snapshot in place, while snap comments always took

the snapshot after the subsequent line of code. Users also did not specify the snapshot cap-

tion in the structured comments. Instead, users ran prepare smallset(), which generated

the snapshots and a custom R Markdown caption template based on the inserted structured

comments. Users then filled out the caption template and passed it—along with the other

output from prepare smallset()—to the create timeline() command, which assembled

the Smallset Timeline.

The main issues with this workflow revolved around the R Markdown caption template.

https://github.com/lydialucchesi/smallsets/tree/v0.0.1.9000
https://cran.r-project.org/src/contrib/Archive/smallsets/
https://github.com/lydialucchesi/smallsets/tree/v1.0.0
https://CRAN.R-project.org/package=smallsets
https://github.com/lydialucchesi/smallsets/tree/v2.0.0

5.4 The evolution of smallsets 77

R1-V0 (November 2022)

1 # start smallset s_data

2 s_data <- s_data[s_data$C2 == TRUE,]

3

4 s_data$C6[is.na(s_data$C6)] <- mean(s_data$C6, na.rm = TRUE)

5 # snap s_data

6 s_data$C8[is.na(s_data$C8)] <- mean(s_data$C8, na.rm = TRUE)

7 s_data$C7 <- NULL

8

9 s_data$C9 <- s_data$C3 + s_data$C4
10 # end smallset s_data

R2-V1 (February 2023)

1 # smallsets start s_data caption[Remove rows where C2

2 # is FALSE.]caption

3 s_data <- s_data[s_data$C2 == TRUE,]

4

5 s_data$C6[is.na(s_data$C6)] <- mean(s_data$C6, na.rm = TRUE)

6 # smallsets snap s_data caption[Replace missing values in C6 and

7 # C8 with column means. Drop C7 because there are too many

8 # missing values.]caption

9 s_data$C8[is.na(s_data$C8)] <- mean(s_data$C8, na.rm = TRUE)

10 s_data$C7 <- NULL

11

12 s_data$C9 <- s_data$C3 + s_data$C4
13 # smallsets end s_data caption[Create a new column,

14 # C9, by summing C3 and C4.]caption

R3-V2 (December 2023)

1 # smallsets snap s_data caption[Remove rows where C2 is FALSE.]caption

2 s_data <- s_data[s_data$C2 == TRUE,]

3

4 # smallsets snap +2 s_data caption[Replace missing values in C6 and

5 # C8 with column means. Drop C7 because there are too many missing

6 # values.]caption

7 s_data$C6[is.na(s_data$C6)] <- mean(s_data$C6, na.rm = TRUE)

8 s_data$C8[is.na(s_data$C8)] <- mean(s_data$C8, na.rm = TRUE)

9 s_data$C7 <- NULL

10

11 # smallsets snap +1 s_data caption[Create a new column, C9, by summing

12 # C3 and C4.]caption

13 s_data$C9 <- s_data$C3 + s_data$C4
14

Figure 5.7: An R preprocessing script for s data shown three times (the code in black is
constant), to illustrate how smallsets structured comments changed with each major release
of the smallsets software (R1-V0, R2-V1, and R3-V2). See Section 5.4.2 for a discussion.

5.4 The evolution of smallsets 78

Whenever a user changed the number or location of the structured comments, a new caption

template had to be generated and filled out. This back and forth between preprocessing script

and caption template proved tedious and clumsy. Another problem with the caption template

was that smallsets had to write a file locally to a user’s machine, which is prohibited for

R CRAN packages. To resolve these issues, the caption template was dropped from the

workflow entirely, and captions were instead integrated into the structured comments. Users

could then directly document their code while also scaffolding the Smallset Timeline. This

update is visualised in the middle script in Figure 5.7. Once captions were integrated into

the structured comments, the commands prepare smallset() and create timeline() were

replaced by a single command: Smallset Timeline(). These changes to the user interface

and workflow appeared in R2-V1.

One aspect of the structured comments that did not change between R1-V0 and R2-

V1 were the instructions—start, snap, and end—with set snapshot locations. We can see

that, in the middle script in Figure 5.7, the second snapshot (line 6) had to be placed in

the middle of the preprocessing step that was being described by the caption, to get the

snapshot in the preferred location. In other words, the old instruction setup combined with

the new caption setup resulted in suboptimal comment/documentation placement within a

preprocessing script. Thus, R3-V2 dropped instructions and added the snap-place argument

to resolve this issue (see Section 5.2.1). Now, structured comments can be placed in a more

intuitive and sensible way throughout a preprocessing script. This most recent update is

visualised in the bottom script in Figure 5.7.

5.4.3 Reducing package dependencies

The first smallsets software release, R1-V0, had more than twice the number of direct

dependencies, at 22 packages. Having that many dependencies made smallsets more vul-

nerable to bugs and errors introduced through changes to the dependencies. Thus, a primary

focus for the second release, R2-V1, was reducing this number to increase the stability of

smallsets. For R2-V1, non-base R sections were re-coded in base R wherever (practically)

possible, resulting in substantial dependency reductions. R2-V1 had seven direct dependen-

cies. This increased to ten in R3-V2 with the introduction of new smallsets features.

5.4 The evolution of smallsets 79

5.4.4 Comments on row tracking in R

As noted Section 5.3.2, smallsets uses row names in R and indices in Python to track

Smallset rows.19 In R1-V0, users could choose whether to have smallsets run the prepro-

cessing code (i.e., the internal snapshot-taking function) on the Smallset rows only or the full

dataset. Because the Smallset Timeline is designed to demonstrate the preprocessing steps

using a “small set” of a data, applying the preprocessing code to just a “small set” of data

seemed to hold, conceptually. It was also potentially a way to save users runtime for large

datasets.

Yet, running on the Smallset only can lead to inaccurate representations of preprocessing,

as certain preprocessing steps may rely on information from the full dataset. For instance,

in the s data example, missing values in column C6 are imputed with the C6 mean. If the

code is run on the Smallset only, the mean calculation for C6 will be incorrect. As a result,

the Smallset Timeline will be misleading, if data are printed in the snapshots. Imagine a

scenario in which data preprocessing steps are dependent on each other; running on the

Smallset only could cause a chain reaction of inaccuracies in the visualisation. Thus, that

option was removed entirely in subsequent software releases (R2-V1 and R3-V2). Now, the

code is always run on the full dataset, with snapshots of the Smallset extracted from it.

It should also be noted that, for smallsets to work properly for R preprocessing code,

the user’s preprocessing code cannot overwrite the row names. That will derail Smallset

tracking. This presents some challenges when trying to make smallsets functional for

preprocessing workflows involving multiple datasets. For instance, the merge() command

in R automatically rewrites row names. Imagine we have datasets A and B. We want to

visualise the preprocessing of A, which involves merging on B (i.e., merge(A, B)). Dataset

A has row names 1, 3, 4, and 5. But after the merge, it will have row names 1, 2, 3, and

4, because merge() re-sequences them. If row name 3 is being tracked, then the second row

in the dataset will be tracked until the merge happens, at which point the third row in the

dataset will be tracked.

This raises the following question: Is there a better way in R to track Smallset rows, than

by row names? The possibility of adding a smallsets ID column to a user’s dataset(s), which

could be used for tracking rows, was considered. However, this ID column could interfere

with a user’s preprocessing code, resulting in inaccurate Smallset Timelines or errors. For

19This includes taking Smallset snapshots and detecting data changes between them.

5.5 Summary 80

example, say a user has a dataset called mydata. In their preprocessing code, they have the

following line of R code: mydata$new <- rowSums(mydata). That code creates a column in

mydata called new, by summing across all of the values in a row. Therefore, if a numeric

smallsets ID column has been added to mydata, those ID numbers will be included in

the row sums for column new. If the smallsets ID column contained characters instead of

numbers (e.g., “1” instead of 1), it would break the code altogether.

Because the R programming language does not have the equivalent of a “primary key”

(i.e., a value that uniquely identifies a row and is immutable), this remains an open problem.

One possibility—for when overwriting row names is inevitable—is to require users to create

their own identification column in the dataset, which smallsets uses instead of row names.

For cases in which the row names have been rewritten because the dataset has undergone

major restructuring (e.g., aggregation across rows), it may make the most sense to re-sample

the Smallset at that point in time and make note of this re-sampling somewhere in the

Smallset Timeline, for Timeline readers. Exploring these possibilities is future work.

5.5 Summary

To summarise, smallsets is an R CRAN package that transforms R or Python preprocessing

code—from an R, R Markdown, Python, or Jupyter Notebook file—into a Smallset Timeline.

There have been three major releases of the smallsets software, each with revisions to the

user workflow and interface. The current workflow involves two steps. First, users must add

structured comments, with snapshot instructions, to their preprocessing code. Second, users

must pass their un-preprocessed dataset and commented preprocessing code as inputs to the

Smallset Timeline() command. On the backend, smallsets executes a four-step process to

build the Smallset Timeline. This includes selecting the Smallset, taking snapshots, detecting

data changes, and building the plot.

The next chapter demonstrates the smallsets tool in action, in four data preprocessing

case studies. The smallsets discussion continues in Chapter 7, which presents findings

from a focus group study that solicited feedback from data practitioners on the smallsets

software tool.

Chapter 6

smallsets in Action: Preprocessing

Case Studies

This chapter presents four data preprocessing case studies. These case studies highlight the

importance of communicating data preprocessing decisions in real-world scenarios. They

also demonstrate use of the Smallset Timeline and smallsets software tool—proposed in

Chapters 4 and 5, respectively—as a simple and effective means for doing so. Each case

study presents one or more Smallset Timelines, produced with smallsets. These Smallset

Timelines vary in terms of appearance (e.g., colours, layout, enrichment features, etc.), to

illustrate the different customisation options available to smallsets users.

The four case studies represent a diverse range of research areas. Section 6.1 features

datasets from the NASA Metrics Data Program (MDP), used widely for software defect

detection research. Section 6.2 focuses on eBird citizen science data [Sullivan et al., 2009]

and its use in ecological modelling. Section 6.3 examines machine learning datasets—retrieved

with the folktables tool [Ding et al., 2021]—containing American Community Survey (ACS)

data. Section 6.4 is on home loan approval data, available through the Home Mortgage

Disclosure Act (HMDA) as an open resource for auditing lending institutions. The latter

two case studies on ACS and HMDA data include analyses that quantify the downstream

effects of data preprocessing decisions on analytical outcomes.

81

6.1 Case study 1: Predicting bugs with NASA MDP data 82

6.1 Case study 1: Predicting bugs with NASA MDP

data

In the early 2000s, the NASA Metrics Data Program (MDP) released 13 datasets for software

defect detection, which involves developing algorithms to predict bugs in source code. The

MDP datasets contained information about software modules in languages like C, C++,

and perl.1 After their release, the datasets became a widely-used resource in the field, with

approximately 30% of software defect prediction studies published between 2000-2010 using

them [Hall et al., 2011].

Like many real-world datasets, the MDP datasets required data preprocessing. Specifi-

cally, there were missing, erroneous, extraneous, and duplicate data to address. In 2011, Gray

et al. raised concerns about how these issues were being dealt with in the defect detection

literature. In some cases, the concern was that these issues were not being dealt with. Over

the next several years, researchers reviewed the NASA MDP datasets, their data quality, and

related preprocessing practices.

This case study first provides an overview of the MDP preprocessing literature. Then,

two example Smallset Timelines are built to visualise the MDP data preprocessing steps

recommended in Gray et al. [2011]. The first Smallset Timeline provides a high-level summary

of the steps, to support general comprehension and evaluation of them. The second Smallset

Timeline provides a more detailed account of the preprocessing steps, to support replication.

In accordance with Table 4.1, there are differences in how the steps are presented in the

Smallset Timeline, given the different communication goals.

6.1.1 The MDP preprocessing literature

The MDP datasets are used as a case study in large part because of the papers focused

specifically on assessing MDP data preprocessing practices [Gray et al., 2011, 2012, Petrić

et al., 2016, Shepperd et al., 2013]. To the best of my knowledge, the first of these papers

was written by Gray et al. in 2011. In that paper, the main concern was related to the issue

of duplicate data occurring in the testing and training sets, which would mean the model was

1This included measures like the number of lines of code, comments, and operations; various software
metrics, e.g., cyclomatic complexity, which refers to the number of linearly independent paths in a mod-
ule [McCabe, 1976]; and whether or not the module was defective.

6.1 Case study 1: Predicting bugs with NASA MDP data 83

not tested on unseen data only. In five of the 13 MDP datasets, over 20% of the instances

are duplicates of other instances. Gray et al. [2011] proposed a five-step data preprocessing

approach, which included removing duplicates from the dataset.

In 2012, the same authors published another paper focused on duplicate data, noting that

“the impression given from the literature is that many defect prediction researchers using this

data have not been aware of this issue” [Gray et al., 2012, p. 557]. They included an experi-

ment with simulated data, showing that the accuracy of a random forest classifier [Breiman,

2001] (a technique used with MDP datasets) increases as the proportion of duplicate data

between the testing and training sets increases. They also refined the five-step preprocessing

approach from before, advising that duplicates appearing in both the training and testing

set be removed from the training set only, to preserve as much data as possible.

Shortly after, Shepperd et al. [2013] published an MDP data quality assessment. It

compared the original MDP datasets with alternative versions housed on the PROMISE

Software Engineering Repository [Sayyad Shirabad and Menzies, 2005], highlighting differ-

ences between them.2 They also proposed an alternative preprocessing approach to Gray

et al. [2012]. They shuffled the order of the preprocessing steps, citing an ordering effect,

and included an additional 15 data integrity checks,3 to the previous three. They noted that

“authors (including ourselves) have not been in the habit of providing complete information

regarding preprocessing of data” [p. 1213] and called for more comprehensive documentation.

With new integrity checks in place, Ghotra et al. [2015] explored the influential finding

in Lessmann et al. [2008] that for ten MDP datasets the prediction performance was largely

similar across different classification techniques. Ghotra et al. [2015] first replicated the

finding in Lessmann et al. [2008], without any integrity checks applied. The analysis was

then repeated but with all 18 integrity checks applied, which resulted in datasets losing

between 12.9% and 87.1% of instances. Now there were notable differences in prediction

performance across classifiers, highlighting the impact of the integrity checks. In 2016, Petrić

et al. proposed two additional integrity checks, for a total of 20.

These papers illustrate that data preprocessing represents an important part of working

with the MDP datasets, or at least ought to. Section 6.1.2 presents two example Smallset

2For example, for the CM1 dataset, the original version had 161 missing values, while the PROMISE
version had zero; yet, for cases with conflicting feature values, the PROMISE version had three, while the
original only had two [Shepperd et al., 2013].

3The integrity checks are tests of logic confirming the data make sense, given what the different values/-
metrics mean.

6.1 Case study 1: Predicting bugs with NASA MDP data 84

CALL_P
AIR

S

CYCLOM
ATIC

_C
OM

PLEXIT
Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

GLOBAL_D
ATA

_C
OM

PLEXIT
Y

GLOBAL_D
ATA

_D
ENSIT

Y

HALSTEAD_L
ENGTH

NUM
_O

PERANDS

NUM
_O

PERATORS

NUM
BER_O

F_L
IN

ES

PA
THOLOGIC

AL_C
OM

PLEXIT
Y

1

0

2

0

0

0

3

1

3

3

1

1

2

2

N

N

N

N

N

N

30

71

47

14

5

16

10

33

19

5

2

2743

38

28

9

3

24

8

23

24

10

10

20

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

Remove columns that have the
same value for every row
because they do not provide
any information for modelling.

 CALL_P
AIR

S

CYCLOM
ATIC

_C
OM

PLEXIT
Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALSTEAD_L
ENGTH

NUM
_O

PERANDS

NUM
_O

PERATORS

NUM
BER_O

F_L
IN

ES

0

0

0

0

1

0

2

0

0

0

3

1

3

3

1

1

2

712

14

5

16 N

N

N

N

N

N

43

30

2847

3

24

810

33

19

5

2

27

20

38

10

9

24

10

23

Replace missing
DECISION_DENSITY values
with zero. Based on other MDP
datasets without missing
DECISION_DENSITY values,
one can deduce that they likely
occurred due to a division by
zero error and can be replaced
with zeros.

 CALL_P
AIR

S

CYCLOM
ATIC

_C
OM

PLEXIT
Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALSTEAD_L
ENGTH

NUM
_O

PERANDS

NUM
_O

PERATORS

NUM
BER_O

F_L
IN

ES

1

22

0

0

N3

N3

3

1

432

71

470

0

16

2333

19 N

N

27

14

38

28

9

24

24

5 10

0 1 0 2 N

203000

35

810 N1

10

Remove rows that are
duplicates of other rows to
assure models are tested on
unseen data only. Also remove
rows that are inconsistent,
meaning all column values are
the same except for the class
label (one is classified as
defective and the other is not).

 CALL_P
AIR

S

CYCLOM
ATIC

_C
OM

PLEXIT
Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALSTEAD_L
ENGTH

NUM
_O

PERANDS

NUM
_O

PERATORS

NUM
BER_O

F_L
IN

ES

2

1

2

3

0

3

3

1

N

2

71

470

00

N

33

19 N

N

2743

38

28

914

2416

23

24

105

The CM1 dataset is now ready
for use in modelling.

*A lighter value indicates a missing data value

Deleted Edited Unchanged*

Figure 6.1: Smallset Timeline for MDP CM1 dataset preprocessed according to Gray et al.
[2011]. Smallset selected using the coverage algorithm. See Section 6.1.2 for a discussion and
Appendix B.1 for the preprocessing script and smallsets code for this figure.

Timelines that document the preprocessing of MDP dataset CM1,4 using the steps recom-

mended in Gray et al. [2011]. CM1 contains information about modules in the C programming

language. It has 505 instances, 40 features, and a column of class labels (defective or not).

6.1.2 Smallset Timelines for dataset CM1

Gray et al. [2011] propose a five-step data preprocessing approach for the MDP datasets.

The steps are as follows: 1) removal of constant attributes, 2) removal of repeated attributes,

3) replacement of missing values, 4) enforce integrity with domain specific expertise, and

5) removal of repeated and inconsistent instances. I translated these five steps into the R

programming language, to build Smallset Timelines for CM1. The code can be found in

Appendices B.1 and B.2.5

Figure 6.1 contains a Smallset Timeline for CM1, designed to support general compre-

hension and evaluation of the preprocessing pipeline. It uses a Smallset with six rows and

4A copy of the original un-preprocessed CM1 dataset was obtained from Tantithamthavorn [2016].
5Note that the code represents an interpretation of the text descriptions of the preprocessing steps in

Gray et al. [2011].

6.2 Case study 2: Inference with eBird citizen science data 85

four snapshots. Only preprocessing steps 1, 3, and 5 are discussed, as steps 2 and 4 do not

affect the dataset. The Smallset Timeline outlines key decisions, such as keeping instances

with missing values instead of removing them, as is sometimes done (e.g., see Shepperd et al.

[2013]). Only eleven data columns are included in the visualisation to keep it compact in

size.6 Note that Figure 6.1 uses a similar amount of space as other figures in this thesis that

are not Smallset Timelines (e.g., Figure 3.1) and remains legible.

The Smallset Timeline in Figure 6.2 is based on the same preprocessing code as Figure 6.1

but was reconfigured to better support replication efforts. The Smallset size was increased

from six rows to ten, to provide more data examples. The number of snapshots was increased

from four to six, to separate the process into its component parts. The snapshot captions

include specific information, such as the number of rows each operation affects in CM1 and

the exact rules for checking data integrity. As a result of these changes, the Smallset Timeline

is larger. Thus, if page space is limited, it may be located in an appendix, rather than the

main text of a publication.

As indicated previously, the three data integrity checks in step 4 do not affect CM1.

While the step was left out of Figure 6.1 for brevity, it is included in Figure 6.2 for clarity. If

replicating the preprocessing strategy on another dataset, it would be necessary for accuracy

and consistency to conduct the same data checks. Thus, they are detailed in Figure 6.2. It

is worth noting that the preprocessing strategy in Shepperd et al. [2013] involves 18 different

integrity checks, while Petrić et al. [2016] suggest 20 different checks. Those additional checks

do result in the loss of instances in CM1. Therefore, for replication, simply saying “the data

checks were run” is not enough. Replication requires more specificity.

6.2 Case study 2: Inference with eBird citizen science

data

This next case study focuses on an application of smallsets in the field of ecology: docu-

menting the preprocessing of citizen science data for use in statistical modelling. In particular,

the focus is on data from the eBird database, a citizen science program with millions of bird

sightings from across the globe [Sullivan et al., 2009]. Citizen scientists upload their bird

sightings, by completing an eBird checklist form. The form collects information about every

6The other 30 columns in the dataset are ignored using ignoreCols in Smallset Timeline().

6.2 Case study 2: Inference with eBird citizen science data 86

CALL
_P

AIR
S

CYCLO
M

AT
IC

_C
OM

PLE
XIT

Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

GLO
BAL_

DAT
A_C

OM
PLE

XIT
Y

GLO
BAL_

DAT
A_D

ENSIT
Y

HALS
TEAD_L

ENGTH

NUM
_O

PERANDS

NUM
_O

PERAT
ORS

NUM
BER_O

F_L
IN

ES

PA
THOLO

GIC
AL_

COM
PLE

XIT
Y

1

2

1

0

2

0

0

8

0

0

2

5

3

1

3

3

1

10

1

1

2

3

2

2

2

N

N

N

N

N

N

N

N

N

N

14

399

5

22

8

59

16

27

155

43

30

71

47

9

19

96

27

20

38

28

10

33

19

5

153

2

24

8

23

24

10

153

10

9

246

3

13

19

90

11

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

Step1: All constantattributesare
removedfrom thedataset.Theseattributes
donotoffer anyusefulinformationwhen
building theclassifier.Therearethree
constantattributesin theCM1 dataset:
GLOBAL_DATA_COMPLEXITY,
GLOBAL_DATA_DENSITY, and
PATHOLOGICAL_COMPLEXITY.

 CALL
_P

AIR
S

CYCLO
M

AT
IC

_C
OM

PLE
XIT

Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALS
TEAD_L

ENGTH

NUM
_O

PERANDS

NUM
_O

PERAT
ORS

NUM
BER_O

F_L
IN

ES

1

2

1

0

2

0

0

8

0

0

2

5

3

1

3

3

1

10

1

1

2

3

2

2

2

N

N

N

N

N

N

N

N

N

N

27

155

43

30

71

47

14

399

5

22

8

59

16

10

33

19

5

153

2

9

19

96

27

20

38

28

9

246

3

13

19

90

24

8

23

24

10

153

10

11

Step2: Removerepeatedattributes.There
arenonein CM1.

 CALL
_P

AIR
S

CYCLO
M

AT
IC

_C
OM

PLE
XIT

Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALS
TEAD_L

ENGTH

NUM
_O

PERANDS

NUM
_O

PERAT
ORS

NUM
BER_O

F_L
IN

ES

0

0

0

0

0

1

2

1

0

2

0

0

8

0

0

2

5

3

1

3

3

1

10

1

1

2

3

2

N

2

N

N

2

155

43

N

N

N

N

N

N

22

N

59

16

27

33

19

30

71

47

14

399

5

27

8

38

28

10

246

3

5

153

2

9

19

96

24

20

153

10

9

90

24

13

19

11

10

8

23

Step3: TheDECISION_DENSITY
attributeis theonly attributethatcontains
missingvaluesin CM1. This attributeis
equalto theCONDITION_COUNT
dividedby theDECISION_COUNT.
Missingvaluesonly occurin
DECISION_DENSITYwhenbothof these
otherattributesequalzero.In otherMDP
datasets,wherebothequalzero,sodoes
DECISION_DENSITY. Thus,themissing
valuesarereplacedwith zero.
(161rowsaffected)

 CALL
_P

AIR
S

CYCLO
M

AT
IC

_C
OM

PLE
XIT

Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALS
TEAD_L

ENGTH

NUM
_O

PERANDS

NUM
_O

PERAT
ORS

NUM
BER_O

F_L
IN

ES

1

2

1

0

2

0

0

8

0

0

2

5

3

1

3

3

1

10

1

1

2

3

2

0

2

0

0

2

0

0

N

N

N

N

N

N

N

N

N

N

27

155

43

30

71

47

14

399

5

22

8

59

16

10

33

19

5

153

2

9

19

96

27

20

38

28

9

246

3

13

19

90

24

8

23

24

10

153

10

11

Step4: All instanceswhich fail oneor
moreof thedataintegrity checksare
removedfrom thedataset.Theintegrity
checksidentify instancesthatcannot
realisticallyhappen.Thefollowing
integrity checksareused:
NUM_OPERANDS+ NUM_OPERATORS
= HALSTEAD_LENGTH;
CYCLOMATIC_COMPLEXITY<=
NUM_OPERATORS+ 1;
CALL_PAIRS<= NUM_OPERATORS.
(0 rowsaffected)

 CALL
_P

AIR
S

CYCLO
M

AT
IC

_C
OM

PLE
XIT

Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALS
TEAD_L

ENGTH

NUM
_O

PERANDS

NUM
_O

PERAT
ORS

NUM
BER_O

F_L
IN

ES

1

2

1

1

2

0

0

8

3

0

2

5

3

0

3

3

0

10

N

1

2

N

2

N

2

0

N

2

155

43

N

71

N

14

399

N

22

N

59

16

27

33

19

5

153

47

9

19

96

27

8

38

28

9

246

24

13

19

90

10

153

23

24

11

0

0

1

0 3

30

1 2

N8

5

0 20

N10

10

Step5: Removerepeatedandinconsistent
cases.Duplicatesaredropped.
(49 rowsaffected)

Inconsistentcasesreferto casesin which
all valuesbut theclasslabelareequal,and
thesearedroppedaswell.
(2 rowsaffected)

 CALL
_P

AIR
S

CYCLO
M

AT
IC

_C
OM

PLE
XIT

Y

DECIS
IO

N_D
ENSIT

Y

Def
ec

tiv
e

HALS
TEAD_L

ENGTH

NUM
_O

PERANDS

NUM
_O

PERAT
ORS

NUM
BER_O

F_L
IN

ES

2

1

0

0

8

2

0

2

5

3

1

3

3

1

10

N

1

2

3

2

N

2

0

0

2

155

0

N

71

N

14

N

N

22

N

59

N

27

33

43

5

153

47

9

399

96

27

8

38

16

9

246

19

13

19

90

24

19

23

24

10

153

28

11

TheCM1 datasetis preprocessedand
readyfor modelling.

*A lighter value indicates a missing data value

Deleted Edited Unchanged*

Figure 6.2: Smallset Timeline for MDP CM1 dataset, for replication. Smallset selected using
the coverage + variety algorithm. See Section 6.1.2 for a discussion and Appendix B.2 for
the preprocessing script and smallsets code for this figure.

6.2 Case study 2: Inference with eBird citizen science data 87

bird observed during an observation period. As noted on the eBird website,7 to date the

eBird data has been used in over 930 publications.

There are different types of citizen science (e.g., structured citizen science, unstructured

citizen science, and crowdsourcing) that exhibit varying levels of control in the data collection

process [Welvaert and Caley, 2016]. The eBird program is both structured and unstructured,

i.e., semi-structured; reporting is done through checklists, which include observation meta-

data, but citizens choose when they want to observe and report [Johnston et al., 2021].

Semi-structured modes of data collection come with a cost, including various types of sam-

pling and reporting biases [Welvaert and Caley, 2016]. Therefore, to use eBird data for

statistical inference, researchers must account for and address data bias, in part through

data preprocessing [Johnston et al., 2021, Strimas-Mackey et al., 2023].

6.2.1 Visualising eBird best practices

Johnston et al. [2021] recommend a series of best practices for using citizen science data.

These recommendations are based on an eBird case study that explored the effects of different

data preparations on statistical inference. The authors found that the combination of using

complete checklists only, spatial subsampling, effort filters,8 and effort covariates produced

the strongest modelling result. As a supplement to the study, Strimas-Mackey et al. [2023]

produced the guide “Best Practices for Using eBird Data,” which provides a step-by-step

implementation of the study’s recommendations in the R programming language.

For the preprocessing code in that guide and a sample of eBird data [eBird, 2023], I built a

Smallset Timeline, shown in Figure 6.3. In particular, I extracted the R snippets from sections

2.6–2.8 in Strimas-Mackey et al. [2023] and inserted smallsets structured comments. The

only change made to the code was wrapping one piped filter() command in the tibble

commands rownames to column() and column to rownames() [Müller and Wickham, 2023],

to preserve row names for smallsets data tracking. The extracted code from Strimas-Mackey

et al. [2023], with inserted structured comments, can be found in Listing B.5; the added

tibble commands are highlighted in red. This case study, in particular, demonstrates that

smallsets can be incorporated into existing data workflows, with minimal overhead.

7https://science.ebird.org/en/research-and-conservation/publications
8Here, effort refers to observation effort, e.g., the length of an observation period, the ground covered and

at what speed, and the number of observers.

https://science.ebird.org/en/research-and-conservation/publications

6.2 Case study 2: Inference with eBird citizen science data 88

al
l_

sp
ec

ie
s_

re
po

rt
ed

ch
ec

kl
is

t_
id

du
ra

ti
on

_m
in

ut
es

ef
fo

rt
_d

is
ta

nc
e_

km

la
ti

tu
de

lo
ca

li
ty

_i
d

lo
ng

it
ud

e

nu
mb

er
_o

bs
er

ve
rs

ob
se

rv
at

io
n_

co
un

t

ob
se

rv
at

io
n_

da
te

ob
se

rv
er

_i
d

pr
ot

oc
ol

_t
yp

e

sp
ec

ie
s_

ob
se

rv
ed

st
at

e_
co

de

ti
me

_o
bs

er
va

ti
on

s_
st

ar
te

d

Eight (of >60,000) rows and 15 (of 35)
columns from an eBird dataset, used to
illustrate the preprocessing steps run
prior to encounter modelling.

al
l_

sp
ec

ie
s_

re
po

rt
ed

ch
ec

kl
is

t_
id

da
y_

of
_y

ea
r

du
ra

ti
on

_m
in

ut
es

ef
fo

rt
_d

is
ta

nc
e_

km

ef
fo

rt
_h

ou
rs

ef
fo

rt
_s

pe
ed

_k
mp

h
ho

ur
s_

of
_d

ay

la
ti

tu
de

lo
ca

li
ty

_i
d

lo
ng

it
ud

e

nu
mb

er
_o

bs
er

ve
rs

ob
se

rv
at

io
n_

co
un

t

ob
se

rv
at

io
n_

da
te

ob
se

rv
er

_i
d

pr
ot

oc
ol

_t
yp

e

sp
ec

ie
s_

ob
se

rv
ed

st
at

e_
co

de

ti
me

_o
bs

er
va

ti
on

s_
st

ar
te

d

ye
ar

STEP 1:
– Convert observation counts into
integers.
– Edit effort distance to be zero for
stationary protocols.
– Create effort hours variable, by
converting duration to hours.
– Create effort speed variable, by
dividing effort distance by effort hours.
– Create hours of day variable (decimal
hours since midnight), based on
observation start time.
– Create year and day-of-year variables,
based on the observation date.

al
l_

sp
ec

ie
s_

re
po

rt
ed

ch
ec

kl
is

t_
id

da
y_

of
_y

ea
r

du
ra

ti
on

_m
in

ut
es

ef
fo

rt
_d

is
ta

nc
e_

km

ef
fo

rt
_h

ou
rs

ef
fo

rt
_s

pe
ed

_k
mp

h
ho

ur
s_

of
_d

ay

la
ti

tu
de

lo
ca

li
ty

_i
d

lo
ng

it
ud

e

nu
mb

er
_o

bs
er

ve
rs

ob
se

rv
at

io
n_

co
un

t

ob
se

rv
at

io
n_

da
te

ob
se

rv
er

_i
d

pr
ot

oc
ol

_t
yp

e

sp
ec

ie
s_

ob
se

rv
ed

st
at

e_
co

de

ti
me

_o
bs

er
va

ti
on

s_
st

ar
te

d

ye
ar

STEP 2:
Filter to the following:
– protocol is stationary or traveling;
– effort hours is <= 6;
– effort distance is <= 10;
– effort speed is <= 100;
– number of observers is <= 10.

al
l_

sp
ec

ie
s_

re
po

rt
ed

ch
ec

kl
is

t_
id

da
y_

of
_y

ea
r

du
ra

ti
on

_m
in

ut
es

ef
fo

rt
_d

is
ta

nc
e_

km

ef
fo

rt
_h

ou
rs

ef
fo

rt
_s

pe
ed

_k
mp

h
ho

ur
s_

of
_d

ay

la
ti

tu
de

lo
ca

li
ty

_i
d

lo
ng

it
ud

e

nu
mb

er
_o

bs
er

ve
rs

ob
se

rv
at

io
n_

co
un

t

ob
se

rv
at

io
n_

da
te

ob
se

rv
er

_i
d

pr
ot

oc
ol

_t
yp

e

sp
ec

ie
s_

ob
se

rv
ed

st
at

e_
co

de

ti
me

_o
bs

er
va

ti
on

s_
st

ar
te

d

ty
pe

ye
ar

STEP 3:
Randomly assign 80% and 20% of the
dataset into a train and test set,
respectively, and create a new type
variable with the assignment “train” or
“test.”

al
l_

sp
ec

ie
s_

re
po

rt
ed

ch
ec

kl
is

t_
id

da
y_

of
_y

ea
r

du
ra

ti
on

_m
in

ut
es

ef
fo

rt
_d

is
ta

nc
e_

km

ef
fo

rt
_h

ou
rs

ef
fo

rt
_s

pe
ed

_k
mp

h
ho

ur
s_

of
_d

ay

la
ti

tu
de

lo
ca

li
ty

_i
d

lo
ng

it
ud

e

nu
mb

er
_o

bs
er

ve
rs

ob
se

rv
at

io
n_

co
un

t

ob
se

rv
at

io
n_

da
te

ob
se

rv
er

_i
d

pr
ot

oc
ol

_t
yp

e

sp
ec

ie
s_

ob
se

rv
ed

st
at

e_
co

de

ti
me

_o
bs

er
va

ti
on

s_
st

ar
te

d

ty
pe

ye
ar

STEP 4:
Drop 22 columns not needed for modelling,
keeping only the 19 columns shown in the
next snapshot.

al
l_

sp
ec

ie
s_

re
po

rt
ed

ch
ec

kl
is

t_
id

da
y_

of
_y

ea
r

ef
fo

rt
_d

is
ta

nc
e_

km
ef

fo
rt

_h
ou

rs

ef
fo

rt
_s

pe
ed

_k
mp

h

ho
ur

s_
of

_d
ay

la
ti

tu
de

lo
ca

li
ty

_i
d

lo
ng

it
ud

e

nu
mb

er
_o

bs
er

ve
rs

ob
se

rv
at

io
n_

co
un

t

ob
se

rv
at

io
n_

da
te

ob
se

rv
er

_i
d

pr
ot

oc
ol

_t
yp

e

sp
ec

ie
s_

ob
se

rv
ed

st
at

e_
co

de

ty
pe

ye
ar

The initial preprocessing of this eBird
dataset is complete. Next, a series of
land cover covariates will be created
from satellite data and merged onto this
dataset, based on locality and year. The
dataset will then be ready for encounter
rate modelling.

*A lighter value indicates a missing data value
Added Deleted Edited Unchanged*

Figure 6.3: Smallset Timeline for the eBird preprocessing steps recommended in Strimas-
Mackey et al. [2023] (see Section 6.2.1). Smallset selected with random sampling. Data
are not printed in snapshots, as per the eBird terms of use. The preprocessing script and
smallsets code for this figure are in Appendix B.3.

6.3 Case study 3: The folktables data for machine learning 89

6.3 Case study 3: The folktables data for machine

learning

This next case study pivots to the field of machine learning (ML), and in particular, the study

of algorithmic fairness. The Adult dataset (also referred to as the Adult Income or Census

Income dataset) [Becker and Kohavi, 1996] from the UC Irvine (UCI) Machine Learning

Repository is a popular dataset for ML research. It contains 1994 census income data, and

the associated estimation task is to predict if an individual earns more than 50,000 dollars

per year. The dataset has been especially popular for studying algorithmic fairness in ML, as

it contains information on sensitive attributes like race and gender. According to Kelly et al.

[2023], the Adult dataset has been formally cited over 250 times, though its use extends far

beyond that to classrooms, tutorials, blogs, etc.

Ding et al. [2021] challenge the ML community’s continued reliance on the dataset. The

authors point to dataset issues, such as the 50,000 dollar threshold for the target variable,

which leads to dataset imbalance by race and gender [Ding et al., 2021]. In turn, they de-

velop a new Python package: folktables.9 It generates benchmark datasets from American

Community Survey (ACS) data and defines prediction tasks, with adjustable income thresh-

olds and data filtering criteria. This option to adjust preprocessing settings is the focus of

this case study. In Section 6.3.1, differences in algorithmic fairness, due to different prepro-

cessing settings, are quantified. In Section 6.3.2, smallsets is integrated into a folktables

workflow in a Jupyter Notebook.

6.3.1 Preprocessing and algorithmic fairness

Previous work on folktables preprocessing has quantified differences in fairness metrics

across fairness interventions and income thresholds [Ding et al., 2021]. In this analysis of

preprocessing effects, the focus is on quantifying differences in fairness metrics across varying

data filtering criteria and income thresholds. The analysis uses 2015 ACS income data from

California (CA), Connecticut (CT), and Utah (UT), retrieved with the folktables tool.

First, four different preprocessing settings are generated. Next, logistic regression models

are trained and tested on the different data preparations, and fairness metrics for the model

9https://github.com/socialfoundations/folktables

https://github.com/socialfoundations/folktables

6.3 Case study 3: The folktables data for machine learning 90

predictions are calculated. Finally, fairness outcomes are compared, revealing downstream

effects from data preprocessing. Each step is discussed below.

Part I: Four preprocessing settings

For this analysis, four preprocessing settings were defined, starting with the folktables

default setting [Ding et al., 2021], referred to here as default-50K. In this setting, an income

threshold of $50K is used to generate positive and negative class labels. This is after filtering

the dataset to retain an individual’s record when they 1) are older than 16 years of age,

2) have a survey weight of at least one, 3) earn more than 100 dollars, and 4) report at

least one hour of usual weekly work. The next preprocessing setting, called default-median,

uses the same set of default data filters but sets the income threshold to the sample median

after filtering ($36K, $45K, and $31.1K for CA, CT, and UT, respectively), to generate more

balanced prediction tasks.

The last two preprocessing settings aim to be inclusive of all the target population, on

the grounds that individuals who did not work and/or reported income losses are still valid

instances for prediction. In turn, the last two filters are dropped. This filtering approach is

referred to as “validity.” The preprocessing setting validity-match uses the same threshold

as default-median, such that the thresholds “match” (e.g., $36K for CA), despite different

data filters. The fourth setting, validity-median, uses its own sample median after validity

filtering is applied ($22.5K, $30.2K, and $23.5K for CA, CT, and UT, respectively). Table 6.1

summarises the four settings. Figure 6.4 is a Smallset Timeline depicting the validity-median

steps applied to the CA dataset.

Preprocessing
setting

Age
>16

Survey
weight ≥1

Income
>100

Hours
worked ≥1

Income
threshold

default-50K ✓ ✓ ✓ ✓ 50K
default-median ✓ ✓ ✓ ✓ median (after filtering)
validity-match ✓ ✓ default-median value
validity-median ✓ ✓ median (after filtering)

Table 6.1: Four different preprocessing settings used in the folktables prediction tasks for
2015 ACS income data. Each setting is a unique combination of data filtering criteria and
income threshold selection for generating the class labels. See Section 6.3.1.

6.3 Case study 3: The folktables data for machine learning 91

AGEP
COW

M
AR

OCCP
PIN

CP

PO
BP

PW
GTP

RA
C1P

RE
LP

SC
HL

SE
X

W
KHP

Here, we have eight rows from the 2015
ACS California income dataset
(n=374,943), retrieved with the
folktables tool. The features, from left to
right, include age (AGEP), class of
worker (COW), educational attainment
(SCHL), marital status (MAR),
occupation (OCCP), place of birth
(POBP), relationship (RELP), weekly
hours worked (WKHP), sex (SEX), race
(RAC1P), income (PINCP), and survey
weight (PWGBT). We first filter to
individuals older than 16 years of age
and with survey weights of at least one.

AGEP
COW

M
AR

OCCP
PIN

CP

PO
BP

PW
GTP

RA
C1P

RE
LP

SC
HL

SE
X

W
KHP

For this prediction task, it is common to
remove individuals with an income less
than 100 dollars or no reported
average weekly hours worked, but we
want to keep these individuals in the
dataset. We do not filter by income,
even keeping reported losses (i.e.,
negative incomes). Missing values for
weekly hours worked are replaced with
zero. We replace missing values in the
categorical features for class of worker
and occupation with negative one, i.e.,
create categories for “no worker class”
and “no occupation.”

AGEP
COW

IN
COM

E

M
AR

OCCP
PIN

CP

PO
BP

PW
GTP

RA
C1P

RE
LP

SC
HL

SE
X

W
KHP

The median income of the dataset (after
filtering), $22.5K, is used as the income
threshold to generate class labels for
the prediction task. These labels are in
the new INCOME column. A 1 in
INCOME means an individual’s income
is greater than $22.5K (and 0
otherwise). Next, we will test and train
a logistic regression model, to predict
INCOME, based on the first ten features
shown (survey weights in PWGTP and
the original income values in PINCP are
excluded from modelling).

*A lighter value indicates a missing data value

Added Deleted* Edited Unchanged*

Figure 6.4: Smallset Timeline of ACS California data preprocessed with the validity-median
setting. Smallset selected with random sampling. The preprocessing script and smallsets

code for this figure are in Appendix B.4.

Part II: Modelling, prediction, and fairness

For each preprocessing setting in Table 6.1, a logistic regression model was trained and tested

on 80% and 20% of the dataset, respectively, using scikit-learn default settings [Pedregosa

et al., 2011] in Python. The prediction task was to predict if an individual’s income is over the

income threshold, based on ten features in the dataset.10 Next, for men and women, differ-

ences of equality of opportunity (EO) [Hardt et al., 2016] and statistical parity (SP) [Dwork

et al., 2012] were computed from the test set predictions. The EO fairness metric checks

that the classifier predicts the positive label with similar accuracy for both groups [Hardt

et al., 2016]. The SP fairness metric checks that the classifier predicts similar proportions

10These ten features are visualised in Figure 6.4 and correspond with the default feature set for the
ACSIncome prediction task in Ding et al. [2021].

6.3 Case study 3: The folktables data for machine learning 92

of the positive label for both groups [Dwork et al., 2012]. Ninety-five percent Newcombe

intervals [Newcombe, 1998] were computed for the differences.

Part III: Assessing preprocessing effects

Figure 6.5 presents dataset imbalance by gender11 as well as the EO and SP differences

between men and women, across the four preprocessing settings.

0

25

50

75

California Connecticut Utah

Percentage of men/women
above the income threshold

a)

0

.1

.2

.3

.4

.5

California Connecticut Utah

Equal opportunity difference
(men/women)

b)

0

.1

.2

.3

.4

California Connecticut Utah

Statistical parity difference
(men/women)

c)

Men
Women

Preprocessing settings

Default-50K– default filters (age>16, survey-weight≥1, income>100, hours-worked≥1), income threshold: 50,000 dollars (UCI Adult 1994)
Default-median– default filters (age>16, survey-weight≥1, income>100, hours-worked≥1), income threshold: median income (after default filtering)
Validity-match – validity filters (age>16, survey-weight≥1), income threshold: default-median income threshold
Validity-median – validity filters (age>16, survey-weight≥1), income threshold: median income (after validity filtering)

Figure 6.5: The effect of four different preprocessing settings on data and prediction. Plot
a) shows dataset imbalance by gender. Plots b) and c) show group fairness measures in pre-
dictions from a logistic regression model. Error bars refer to 95% Newcombe intervals [New-
combe, 1998]. See Section 6.3.1 for a complete discussion.

Figure 6.5(a) compares the percentage of men and women above the income threshold,

showing that certain thresholds achieve greater balance than others. For example, in the

California dataset, the default-median setting results in more balance between men and

women (aiming for equal splits) than default-50K. However, using the same income threshold

alone will not guarantee balance or consistency across studies that use different data filters.

Comparing default-median and validity-match for California, which have matching thresholds

11In the original dataset, the attribute corresponds with a male/female encoding and does not include
nonbinary gender options.

6.3 Case study 3: The folktables data for machine learning 93

($36K) but different data filters, we see a substantial change in the percentage of women above

the income threshold (43.8% and 29.4%, respectively).

Figure 6.5(b) shows a significant difference in the equal opportunity difference between

default-50K and the other three settings for Utah. For California, there is a significant

difference between default-50K and default-median as well as default-median and validity-

match. Variations among settings in Connecticut are much smaller. Figure 6.5(c) shows

that, across the four settings, the statistical parity differences are significantly different for

California but not for Connecticut or Utah. The takeaway is twofold. Preprocessing deci-

sions for the folktables benchmark datasets can influence fairness outcomes in modelling.

Therefore, communicating these decisions is crucial, to ensure valid comparisons across the

benchmarking studies that use them.

6.3.2 smallsets in Jupyter Notebooks

A smallsets user can integrate Smallset Timelines directly into a folktables [Ding et al.,

2021] workflow, housed in a Jupyter Notebook with a Python kernel. Figures 6.6 and 6.7

show a Jupyter Notebook called fairness analysis.ipynb with four cells of code. The first cell

imports software packages required for the analysis. The second cell contains a preprocessing

function that implements the data filters and income threshold of the validity median pre-

processing setting (see Table 6.1). The function is documented with smallsets structured

comments.

The third cell creates a prediction task using class folktables.BasicProblem. In that

class, the validity_median function is passed to the preprocess argument. Additionally,

the 2015 ACS California income dataset is downloaded with folktables. The dataset is

assigned to object ca_acs_data and passed to the prediction task, which returns three arrays:

preprocessed features, class labels, and group labels for the fairness assessment.

The fourth cell is an Rmagic cell from rpy2,12 which enables execution of R code in the

Jupyter Notebook. This cell is used to run smallsets. The data object ca_acs_data and the

Jupyter Notebook itself (fairness analysis.ipynb) are passed to the data and code arguments,

respectively, in the Smallset Timeline() command. This prints a Smallset Timeline for the

validity_median function (located in the second cell) below the Rmagic cell. From there,

the analysis proceeds to building models and measuring fairness in model predictions.

12https://rpy2.github.io

https://rpy2.github.io

6.3 Case study 3: The folktables data for machine learning 94

Fairness Analysis (fairness_analysis.ipynb)

1. Load libraries

import numpy as np
import pandas as pd
import folktables
from folktables import ACSDataSource
%load_ext rpy2.ipython

2. Prepare preprocessing steps

Define a preprocessing function to pass to preprocess argument in folktables.BasicProblem
Add smallsets structured comments

def validity_median(data):
 # smallsets snap data caption[Here, we have eight rows
 # from the 2015 ACS California income dataset (n=374,943),
 # retrieved with the folktables tool. The features, from
 # left to right, include age (AGEP), class of worker (COW),
 # educational attainment (SCHL), marital status (MAR),
 # occupation (OCCP), place of birth (POBP), relationship
 # (RELP), weekly hours worked (WKHP), sex (SEX), race
 # (RAC1P), income (PINCP), and survey weight (PWGBT). We
 # first filter to individuals older than 16 years of age
 # and with survey weights of at least one.]caption
 data = data[data["AGEP"] > 16]
 data = data[data["PWGTP"] >= 1]

 # smallsets snap +3 data caption[For this prediction task,
 # it is common to remove individuals with an income less
 # than 100 dollars or no reported average weekly hours
 # worked, but we want to keep these individuals in the
 # dataset. We do not filter by income, even keeping reported
 # losses (i.e., negative incomes). Missing values for weekly
 # hours worked are replaced with zero. We replace missing
 # values in the categorical features for class of worker
 # and occupation with negative one, i.e., create categories
 # for "no worker class" and "no occupation."]caption
 data["WKHP"] = data["WKHP"].fillna(0)
 data["COW"] = data["COW"].fillna(-1)
 data["OCCP"] = data["OCCP"].fillna(-1)

 # smallsets snap +2 data caption[The median income of the
 # dataset (after filtering), $22.5K, is used as the income
 # threshold to generate class labels for the prediction task.
 # These labels are in the new INCOME column. A **1** in INCOME
 # means an individual's income is greater than $22.5K (and
 # **0** otherwise). Next, we will test and train a logistic
 # regression model, to predict INCOME, based on the first ten
 # features shown (survey weights in PWGTP and the original
 # income values in PINCP are excluded from modelling).]caption
 income_threshold = data["PINCP"].median()
 data["INCOME"] = (data["PINCP"] > income_threshold).astype(int)

 return data

3. Set up folktables problem and data

Pass preprocessing function defined above to preprocess argument in folktables.BasicProblem

create a new folktables prediction task
ACSIncome = folktables.BasicProblem(
 features = ["AGEP", "COW", "SCHL", "MAR", "OCCP", "POBP", "RELP", "WKHP", "SEX", "RAC1P"],
 target = "INCOME",
 group = "SEX",
 preprocess = validity_median # use preprocessing function defined above
)

download folktables data
acs_data = ACSDataSource(survey_year = '2015', horizon = '1-Year', survey = 'person')
ca_acs_data = acs_data.get_data(states = ["CA"], download = True)
ca_acs_data = ca_acs_data[["AGEP", "COW", "SCHL", "MAR", "OCCP", "POBP",
 "RELP", "WKHP", "SEX", "RAC1P", "PINCP", "PWGTP"]]

set up prediction task
features, label, group = ACSIncome.df_to_numpy(ca_acs_data)

4. Visualise preprocessing with smallsets in an Rmagic cell

Input the folktables data into the Rmagic cell with -i

Pass that data and this Juptyer Notebook (fairness_analysis.ipynb) to smallsets

%%R -w 800 -h 400 -r 100 -i ca_acs_data

library("smallsets")
set.seed(40)

rownames(ca_acs_data) <- NULL
ca_acs_data[ca_acs_data == "NaN"] <- NA

Smallset_Timeline(data = ca_acs_data,
 code = "fairness_analysis.ipynb",
 rowCount = 8,
 colours = list(unchanged = "#0e2f44", edited = "#A68156",
 added = "#20BE06", deleted = "#800080"),
 missingDataTints = TRUE,
 font = "Futura",
 sizing = sets_sizing(captions = 2, columns = 2, legend = 10),
 spacing = sets_spacing(degree = 45, header = 2, captions = 5, right = 1),
 labelling = sets_labelling(labelCol = "darker", labelColDif = 0))

5. Build model...

6. Assess fairness of model...

In [1]:

In [2]:

Figure 6.6: First half of the Jupyter Notebook fairness analysis.ipynb, for the scenario de-
scribed in Section 6.3.2, in which smallsets is integrated into a folktables workflow. The
second code cell contains a Python preprocessing function, documented with smallsets

structured comments. The second half of the Notebook can be found in Figure 6.7, which
includes a Smallset Timeline.

6.3 Case study 3: The folktables data for machine learning 95

Fairness Analysis (fairness_analysis.ipynb)

1. Load libraries

import numpy as np
import pandas as pd
import folktables
from folktables import ACSDataSource
%load_ext rpy2.ipython

2. Prepare preprocessing steps

Define a preprocessing function to pass to preprocess argument in folktables.BasicProblem
Add smallsets structured comments

def validity_median(data):
 # smallsets snap data caption[Here, we have eight rows
 # from the 2015 ACS California income dataset (n=374,943),
 # retrieved with the folktables tool. The features, from
 # left to right, include age (AGEP), class of worker (COW),
 # educational attainment (SCHL), marital status (MAR),
 # occupation (OCCP), place of birth (POBP), relationship
 # (RELP), weekly hours worked (WKHP), sex (SEX), race
 # (RAC1P), income (PINCP), and survey weight (PWGBT). We
 # first filter to individuals older than 16 years of age
 # and with survey weights of at least one.]caption
 data = data[data["AGEP"] > 16]
 data = data[data["PWGTP"] >= 1]

 # smallsets snap +3 data caption[For this prediction task,
 # it is common to remove individuals with an income less
 # than 100 dollars or no reported average weekly hours
 # worked, but we want to keep these individuals in the
 # dataset. We do not filter by income, even keeping reported
 # losses (i.e., negative incomes). Missing values for weekly
 # hours worked are replaced with zero. We replace missing
 # values in the categorical features for class of worker
 # and occupation with negative one, i.e., create categories
 # for "no worker class" and "no occupation."]caption
 data["WKHP"] = data["WKHP"].fillna(0)
 data["COW"] = data["COW"].fillna(-1)
 data["OCCP"] = data["OCCP"].fillna(-1)

 # smallsets snap +2 data caption[The median income of the
 # dataset (after filtering), $22.5K, is used as the income
 # threshold to generate class labels for the prediction task.
 # These labels are in the new INCOME column. A **1** in INCOME
 # means an individual's income is greater than $22.5K (and
 # **0** otherwise). Next, we will test and train a logistic
 # regression model, to predict INCOME, based on the first ten
 # features shown (survey weights in PWGTP and the original
 # income values in PINCP are excluded from modelling).]caption
 income_threshold = data["PINCP"].median()
 data["INCOME"] = (data["PINCP"] > income_threshold).astype(int)

 return data

3. Set up folktables problem and data

Pass preprocessing function defined above to preprocess argument in folktables.BasicProblem

create a new folktables prediction task
ACSIncome = folktables.BasicProblem(
 features = ["AGEP", "COW", "SCHL", "MAR", "OCCP", "POBP", "RELP", "WKHP", "SEX", "RAC1P"],
 target = "INCOME",
 group = "SEX",
 preprocess = validity_median # use preprocessing function defined above
)

download folktables data
acs_data = ACSDataSource(survey_year = '2015', horizon = '1-Year', survey = 'person')
ca_acs_data = acs_data.get_data(states = ["CA"], download = True)
ca_acs_data = ca_acs_data[["AGEP", "COW", "SCHL", "MAR", "OCCP", "POBP",
 "RELP", "WKHP", "SEX", "RAC1P", "PINCP", "PWGTP"]]

set up prediction task
features, label, group = ACSIncome.df_to_numpy(ca_acs_data)

4. Visualise preprocessing with smallsets in an Rmagic cell

Input the folktables data into the Rmagic cell with -i

Pass that data and this Juptyer Notebook (fairness_analysis.ipynb) to smallsets

%%R -w 800 -h 400 -r 100 -i ca_acs_data

library("smallsets")
set.seed(40)

rownames(ca_acs_data) <- NULL
ca_acs_data[ca_acs_data == "NaN"] <- NA

Smallset_Timeline(data = ca_acs_data,
 code = "fairness_analysis.ipynb",
 rowCount = 8,
 colours = list(unchanged = "#0e2f44", edited = "#A68156",
 added = "#20BE06", deleted = "#800080"),
 missingDataTints = TRUE,
 font = "Futura",
 sizing = sets_sizing(captions = 2, columns = 2, legend = 10),
 spacing = sets_spacing(degree = 45, header = 2, captions = 5, right = 1),
 labelling = sets_labelling(labelCol = "darker", labelColDif = 0))

5. Build model...

6. Assess fairness of model...

In [3]:

In [5]:

Figure 6.7: Second half of the Jupyter Notebook fairness analysis.ipynb, for the scenario
described in Section 6.3.2, in which smallsets is integrated into a folktables workflow.
The output of the fourth code cell is a Smallset Timeline, visualising the preprocessing code
from the second code cell, which is shown in Figure 6.6 (the first half of the Notebook).

6.4 Case study 4: Home lending audits with HMDA data 96

6.4 Case study 4: Home lending audits with HMDA

data

The final case study is on home lending data. In 1975, the United States (U.S.) Congress

passed the Home Mortgage Disclosure Act (HMDA), mandating that data about home lend-

ing be made public. Since then, HMDA data have become a valuable resource to understand

the lending market and audit lending bodies for discriminatory practices [McCoy, 2007].13 It

is illegal in the U.S. to deny an applicant a home loan on the basis of race or color, national

origin, religion, sex, familial status, or handicap [Fair Housing Act]. Auditing with the use of

HMDA data, however, is not a straightforward task. Rather, it requires careful examination

of the data and difficult decisions about how to best use it [Avery et al., 2007].

HMDA reporting requirements have evolved over time. For instance, in 1989, reporting

requirements broadened to include denied home loan applications, and it became mandatory

to report applicants’ race, ethnicity, and gender [McCoy, 2007]. Presently, one can visit

the HMDA Data Browser website and download an HMDA dataset of their choosing.14 A

standard CSV download will include 99 different columns of data, related to the lending

institution, loan, property, geography, applicant, and census track. This case study considers

nine of these columns and presents a simple auditing scenario, designed to illustrate some of

the preprocessing decisions faced by researchers working with HMDA data.

6.4.1 A missing data dilemma

The auditing scenario involves two (fictitious) researchers, Alice and Bob. Both want to

use HMDA data to compare the percentage of home loan denials among those who are

Hispanic/Latino White and non-Hispanic/Latino White. Alice and Bob start with the same

HMDA dataset for loans in Philadelphia County in 2019. The dataset consists of multiple

columns of race and ethnicity information for the applicant, as applicants can specify up

to five races and ethnicities.15 Note that if an applicant does not specify race or ethnicity,

a lender can collect it on the basis of visual appearance or surname. The dataset also has

13Though, as noted by Poirier [2022], disclosure datasets such as HMDA data are not without their limita-
tions, including conflicts of interest in self-reporting, data dictionaries containing definitions that shift with
time and changing political landscapes, and loss of context and nuance in checkbox reporting forms.

14https://ffiec.cfpb.gov/data-browser/
15For simplicity, this audit does not consider the demographic information of co-applicants.

https://ffiec.cfpb.gov/data-browser/

6.4 Case study 4: Home lending audits with HMDA data 97

Table 6.2: Percentage of denied loans by group
and data availability. See Section 6.4.1.

White

Non-Hispanic/Latino (n=5213) 5.52
Missing ethnicity data (n=138) 6.52

Hispanic/Latino

White (n=662) 9.97
Missing race data (n=144) 22.22

Table 6.3: Percentage of denied loans cal-
culated by researchers Alice and Bob. See
Section 6.4.1.

Alice Bob

Hispanic/Latino White 9.97 12.16
Non-Hispanic/Latino White 5.52 5.55

information on the outcome of the application.

During data preprocessing, Alice and Bob must first collapse the information in the race

and ethnicity columns into a single value, for each applicant. Then, they must address the

issue of missing data. Some applicants have race data but not ethnicity data, and vice

versa. Both start by generating binary variables for race (White or not White) and ethnicity

(Hispanic/Latino or not Hispanic/Latino). Afterwards, Alice drops rows with missing race

or ethnicity values, while Bob retains them through imputation. Specifically, for Hispanic-

s/Latinos, Bob replaces missing race values with White. For Whites, Bob replaces missing

ethnicity values with non-Hispanic/Latino. Bob does this because, in the dataset, 82% of

Hispanics/Latinos identify as White and 89% of Whites identify as non-Hispanic/Latino.

However, the missing race data among Hispanics/Latinos does not appear to be “missing

at random” [Rubin, 1976]. The percentage of denied loans among those without race data is

more than double that of those with race data (22.22% vs. 9.97%, see Table 6.2). Thus, the

decision to drop or impute missing data influences the outcome of the audit.16 Table 6.3 shows

that the calculated percentage of denied loans for Hispanic/Latino Whites differs between

Alice and Bob at 9.97% and 12.16%. The Smallset Timelines in Figures 6.8 and 6.9 capture

their decisions, respectively. The Smallset for each was selected with the coverage + variety

model (see Section 4.3.1) on a 5% random sample from the dataset.17 Bob’s decision to

impute is emphasised, visually, with the presence of several bright green data cells.

16Note that this case study presents a simplified version of an auditing analysis. In practice, analyses often
involve a regression model to control for factors like income, loan amount, property type, etc. Each of these
additional variables may be subject to preprocessing, with cumulative effects on outputs and conclusions.

17The sample size was 550 rows. While the same sample was used for both, the selected rows vary, as the
model optimises based on the user’s preprocessing steps.

6.4 Case study 4: Home lending audits with HMDA data 98

ac
tio

n

et
h_

1 et
h_

2 et
h_

3

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

1111111

2222223

5535356 Fo
r

ou
r

au
di

t,
w

e
m

us
t
fir

st
pr

ep
ro

ce
ss

th
e

2
0

1
9

H
M

D
A

da
ta

fo
r

Ph
ila

de
lp

hi
a

Co
un

ty
.

Th
e

da
ta

se
t

in
cl

ud
es

lo
an

s
ca

te
go

ris
ed

as
co

nv
en

ti
on

al
,

fir
st

lie
n,

ho
m

e
pu

rc
ha

se
,s

in
gl

e
fa

m
ily

,s
it

e-
bu

ilt
,

no
n-

co
m

m
er

ci
al

,a
nd

no
t

a
pr

ea
pp

ro
va

l.
O

rig
in

al
co

lu
m

n
na

m
es

ha
ve

be
en

ab
br

ev
ia

te
d,

e.
g.

,a
pp

lic
an

t_
ra

ce
-1

–>
ra

ce
_

1
,

ap
pl

ic
at

io
n_

et
hn

ic
it

y-
1

–>
et

h_
1

,a
nd

ac
ti

on
_

ta
ke

n
–>

ac
ti

on
.T

he
et

h_
4

an
d

et
h_

5
co

lu
m

ns
w

er
e

ex
cl

ud
ed

be
ca

us
e

ap
pl

ic
an

ts
on

ly
sp

ec
ifi

ed
at

m
os

t
th

re
e

et
hn

ic
it

ie
s.

Th
e

da
ta

se
t

co
nt

ai
ns

1
1

,0
0

8
ro

w
s.

Se
ve

n
ro

w
s

w
er

e
se

le
ct

ed
,f

ro
m

a
5

%
ra

nd
om

sa
m

pl
e

(n
=

5
5

0
),

us
in

g
th

e
co

ve
ra

ge
+

va
rie

ty
op

ti
m

is
at

io
n

al
go

rit
hm

pr
ov

id
ed

in
th

e
sm

al
ls

et
s

so
ft

w
ar

e.

ac
tio

n

et
h_

1 et
h_

2 et
h_

3

h_
l

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

whit
e 0 00 000

110101

1111111

2222223
6 553535 W
e
fir

st
cl

as
si

fy
w

ho
is

no
n-

H
is

pa
ni

c/
La

ti
no

W
hi

te
an

d
H

is
pa

ni
c/

La
ti

no
W

hi
te

.
In

di
vi

du
al

s
ca

n
sp

ec
ify

on
e

or
m

or
e

ra
ce

s
(r

ac
e_

1
-5

)
an

d
on

e
or

m
or

e
et

hn
ic

it
ie

s
(e

th
_

1
-3

).
W

e
cr

ea
te

a
du

m
m

y
va

ria
bl

e
fo

r
W

hi
te

,w
he

re
w

hi
te

=
1

if
an

ap
pl

ic
an

t
on

ly
se

le
ct

s
W

hi
te

(r
ac

e
=

5
)

(e
.g

.,
an

ap
pl

ic
an

t
w

it
h

W
hi

te
(r

ac
e_

1
=

5
)

an
d

A
si

an
(r

ac
e_

2
=

2
)

w
ou

ld
be

w
hi

te
=

0
).

W
e

al
so

cr
ea

te
a

du
m

m
y

va
ria

bl
e

fo
r

H
is

pa
ni

c/
La

ti
no

(h
_

l)
,w

he
re

h_
l

=
1

if
an

ap
pl

ic
an

t
se

le
ct

s
H

is
pa

ni
c

or
La

ti
no

(e
th

=
1

)
or

a
sp

ec
ifi

c
or

ig
in

gr
ou

p
(e

th
=

1
1

-1
4

),
an

d
h_

l=
0

fo
r

th
e

se
le

ct
io

n
of

no
t

H
is

pa
ni

c
or

La
ti

no
(e

th
=

2
).

ac
tio

n

et
h_

1 et
h_

2 et
h_

3

h_
l

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

whit
e

3

11

2

1

2
36

00

3
00

1111

2222

0000

5555

111 1

W
e

su
bs

et
to

th
os

e
w

ho
ar

e
cl

as
si
fie

d
as

W
hi

te
(w

hi
te

=
1

).
N

ex
t,

w
e

dr
op

1
3

8
ro

w
s

w
it

h
m

is
si

ng
et

hn
ic

it
y

in
fo

rm
at

io
n

(h
_

l=
N

A
).

ac
tio

n

de
ny

et
h_

1 et
h_

2 et
h_

3

h_
l

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

whit
e

0 00 0

00

11
2

1
2

1
2

5

2
55

0
1

0

5

1 11

Fr
om

th
e

ac
ti

on
va

ria
bl

e,
w

e
cr

ea
te

a
du

m
m

y
va

ria
bl

e
fo

r
de

ni
ed

lo
an

s
(d

en
y)

,w
he

re
de

ny
=

1
if

th
e

ap
pl

ic
at

io
n

w
as

de
ni

ed
(a

ct
io

n
=

3
).

Lo
an

s
ar

e
co

ns
id

er
ed

ap
pr

ov
ed

(d
en

y
=

0
)

if
th

e
lo

an
or

ig
in

at
ed

(a
ct

io
n

=
1

)
or

th
e

ap
pl

ic
at

io
n

w
as

ap
pr

ov
ed

bu
t

no
t

ac
ce

pt
ed

(a
ct

io
n

=
2

).
Th

e
pr

ep
ro

ce
ss

ed
da

ta
se

t
co

ns
is

ts
of

6
,1

5
7

ap
pl

ic
an

ts
.

*A
 li

gh
te

r
va

lu
e

in
di

ca
te

s
a

m
is

si
ng

 d
at

a
va

lu
e

A
dd

ed
*

D
el

et
ed

*

U
nc

ha
ng

ed
*

F
ig
u
re

6.
8:

S
m
al
ls
et

T
im

el
in
e,

cr
ea
te
d
w
it
h
th
e
s
m
a
l
l
s
e
t
s
so
ft
w
ar
e,

d
et
ai
li
n
g
th
e
p
re
p
ro
ce
ss
in
g
d
ec
is
io
n
s
of

re
-

se
ar
ch
er

A
li
ce

in
th
e
h
om

e
lo
an

d
at
a
ca
se

st
u
d
y
d
is
cu
ss
ed

in
S
ec
ti
on

6.
4.
1.

T
h
e
p
re
p
ro
ce
ss
in
g
sc
ri
p
t
an

d
s
m
a
l
l
s
e
t
s

co
d
e
fo
r
th
is
fi
gu

re
ar
e
in

A
p
p
en
d
ix

B
.5
.

6.4 Case study 4: Home lending audits with HMDA data 99

ac
tio

n

et
h_

1 et
h_

2 et
h_

3

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

3311111

2313223

1
2

2565516

2
2

2
6

Fo
r

ou
r

au
di

t,
w

e
m

us
t
fir

st
pr

ep
ro

ce
ss

th
e

2
0

1
9

H
M

D
A

da
ta

fo
r

Ph
ila

de
lp

hi
a

Co
un

ty
.

Th
e

da
ta

se
t

in
cl

ud
es

lo
an

s
ca

te
go

ris
ed

as
co

nv
en

ti
on

al
,

fir
st

lie
n,

ho
m

e
pu

rc
ha

se
,s

in
gl

e
fa

m
ily

,s
it

e-
bu

ilt
,

no
n-

co
m

m
er

ci
al

,a
nd

no
t

a
pr

ea
pp

ro
va

l.
O

rig
in

al
co

lu
m

n
na

m
es

ha
ve

be
en

ab
br

ev
ia

te
d,

e.
g.

,a
pp

lic
an

t_
ra

ce
-1

–>
ra

ce
_

1
,

ap
pl

ic
at

io
n_

et
hn

ic
it

y-
1

–>
et

h_
1

,a
nd

ac
ti

on
_

ta
ke

n
–>

ac
ti

on
.T

he
et

h_
4

an
d

et
h_

5
co

lu
m

ns
w

er
e

ex
cl

ud
ed

be
ca

us
e

ap
pl

ic
an

ts
on

ly
sp

ec
ifi

ed
at

m
os

t
th

re
e

et
hn

ic
it

ie
s.

Th
e

da
ta

se
t

co
nt

ai
ns

1
1

,0
0

8
ro

w
s.

Se
ve

n
ro

w
s

w
er

e
se

le
ct

ed
,f

ro
m

a
5

%
ra

nd
om

sa
m

pl
e

(n
=

5
5

0
),

us
in

g
th

e
co

ve
ra

ge
+

va
rie

ty
op

ti
m

is
at

io
n

al
go

rit
hm

pr
ov

id
ed

in
th

e
sm

al
ls

et
s

so
ft

w
ar

e.

ac
tio

n

et
h_

1 et
h_

2 et
h_

3

h_
l

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

whit
e 0 0 01

01110

3311111

2313223

1
2

6

2
2

256551

2
6

W
e
fir

st
cl

as
si

fy
w

ho
is

no
n-

H
is

pa
ni

c/
La

ti
no

W
hi

te
an

d
H

is
pa

ni
c/

La
ti

no
W

hi
te

.
In

di
vi

du
al

s
ca

n
sp

ec
ify

on
e

or
m

or
e

ra
ce

s
(r

ac
e_

1
-5

)
an

d
on

e
or

m
or

e
et

hn
ic

it
ie

s
(e

th
_

1
-3

).
W

e
cr

ea
te

a
du

m
m

y
va

ria
bl

e
fo

r
W

hi
te

,w
he

re
w

hi
te

=
1

if
an

ap
pl

ic
an

t
on

ly
se

le
ct

s
W

hi
te

(r
ac

e
=

5
)

(e
.g

.,
an

ap
pl

ic
an

t
w

it
h

W
hi

te
(r

ac
e_

1
=

5
)

an
d

A
si

an
(r

ac
e_

2
=

2
)

w
ou

ld
be

w
hi

te
=

0
).

W
e

al
so

cr
ea

te
a

du
m

m
y

va
ria

bl
e

fo
r

H
is

pa
ni

c/
La

ti
no

(h
_

l)
,w

he
re

h_
l

=
1

if
an

ap
pl

ic
an

t
se

le
ct

s
H

is
pa

ni
c

or
La

ti
no

(e
th

=
1

)
or

a
sp

ec
ifi

c
or

ig
in

gr
ou

p
(e

th
=

1
1

-1
4

),
an

d
h_

l=
0

fo
r

th
e

se
le

ct
io

n
of

no
t

H
is

pa
ni

c
or

La
ti

no
(e

th
=

2
).

ac
tio

n

et
h_

1 et
h_

2 et
h_

3

h_
l

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

whit
e

3
0

2
2

11

2
2

2
6

23
6

0

0
1

0
0

00
1

1
0

2
55

311

313
1

2
1

6

1 11

5 Fo
r

th
e

1
7

.9
%

(n
=

1
4

4
)

of
H

is
pa

ni
cs

/L
at

in
os

m
is

si
ng

ra
ce

da
ta

(r
ac

e
=

6
(i

nf
o

no
t

pr
ov

id
ed

),
7

(i
nf

o
no

t
ap

pl
ic

ab
le

),
or

N
A

(i
nf

o
no

t
av

ai
la

bl
e)

),
w

e
im

pu
te

W
hi

te
(w

hi
te

=
1

),
as

th
e

m
aj

or
it

y
of

H
is

pa
ni

cs
/L

at
in

os
in

th
e

da
ta

se
t

(8
2

%
)

ar
e

W
hi

te
(w

hi
te

=
1

).
Fo

r
th

e
2

.6
%

(n
=

1
3

8
)

of
W

hi
te

s
m

is
si

ng
et

hn
ic

it
y

da
ta

(e
th

=
3

(i
nf

o
no

t
pr

ov
id

ed
)

or
N

A
(i

nf
o

no
t

av
ai

la
bl

e)
),

w
e

im
pu

te
no

n-
H

is
pa

ni
c/

La
ti

no
(h

_
l=

0
),

as
th

e
m

aj
or

it
y

of
W

hi
te

s
in

th
e

da
ta

se
t

(8
9

%
)

ar
e

no
n-

H
is

pa
ni

c/
La

ti
no

(h
_

l=
0

).
A

ft
er

im
pu

ti
ng

m
is

si
ng

ra
ce

an
d

et
hn

ic
it

y
va

lu
es

,w
e

su
bs

et
to

th
os

e
cl

as
si
fie

d
as

W
hi

te
(w

hi
te

=
1

).

ac
tio

n

de
ny

et
h_

1 et
h_

2 et
h_

3

h_
l

ra
ce

_1 ra
ce

_2 ra
ce

_3 ra
ce

_4 ra
ce

_5

whit
e

0 100
0

3111
2

55

1
2

10

313

0
6

1111

5 Fr
om

th
e

ac
ti

on
va

ria
bl

e,
w

e
cr

ea
te

a
du

m
m

y
va

ria
bl

e
fo

r
de

ni
ed

lo
an

s
(d

en
y)

,w
he

re
de

ny
=

1
if

th
e

ap
pl

ic
at

io
n

w
as

de
ni

ed
(a

ct
io

n
=

3
).

Lo
an

s
ar

e
co

ns
id

er
ed

ap
pr

ov
ed

(d
en

y
=

0
)

if
th

e
lo

an
or

ig
in

at
ed

(a
ct

io
n

=
1

)
or

th
e

ap
pl

ic
at

io
n

w
as

ap
pr

ov
ed

bu
t

no
t

ac
ce

pt
ed

(a
ct

io
n

=
2

).
Th

e
pr

ep
ro

ce
ss

ed
da

ta
se

t
co

ns
is

ts
of

6
,1

5
7

ap
pl

ic
an

ts
.

*A
 li

gh
te

r
va

lu
e

in
di

ca
te

s
a

m
is

si
ng

 d
at

a
va

lu
e

A
dd

ed
*

D
el

et
ed

*

Ed
it
ed

U
nc

ha
ng

ed
*

F
ig
u
re

6.
9:

S
m
al
ls
et

T
im

el
in
e,

cr
ea
te
d
w
it
h
th
e
s
m
a
l
l
s
e
t
s
so
ft
w
ar
e,

d
et
ai
li
n
g
th
e
p
re
p
ro
ce
ss
in
g
d
ec
is
io
n
s
of

re
-

se
ar
ch
er

B
ob

in
th
e
h
om

e
lo
an

d
at
a
ca
se

st
u
d
y
d
is
cu
ss
ed

in
S
ec
ti
on

6.
4.
1.

T
h
e
p
re
p
ro
ce
ss
in
g
sc
ri
p
t
an

d
s
m
a
l
l
s
e
t
s

co
d
e
fo
r
th
is
fi
gu

re
ar
e
in

A
p
p
en
d
ix

B
.6
.

Chapter 7

Focus Groups on smallsets

This chapter presents the final contribution of this thesis: a focus group study on the

smallsets software tool, which was proposed in Chapter 5 and demonstrated in Chapter 6.

The study served as a first step in formally evaluating smallsets, with prospective users. It

generated actionable feedback—regarding strengths and weaknesses of the smallsets tool—

and data on real-world experiences with preprocessing communication. The remainder of this

chapter is structured as follows. First, the motivation for this study, including the choice to

use focus groups, is detailed (Section 7.1). Next, the methodology for conducting the focus

groups and analysing the data is described (Section 7.2). Then, the focus group findings are

presented (Section 7.3). Finally, the limitations and key takeaways of the study are discussed

(Section 7.4).

7.1 Motivation

After version 1.0.0 of smallsets was published (see Table 5.4), attention turned towards

evaluating three main aspects of the smallsets software, for two main reasons. Following are

the three aspects of interest: 1) the smallsets deployment context, i.e., data practitioners’

experiences with and attitudes towards preprocessing communication; 2) the utility and

usability of smallsets; and 3) the visualisation produced with smallsets: the Smallset

Timeline. The first reason for evaluating these three aspects of smallsets was to crosscheck

100

7.1 Motivation 101

Label Design Goals

smallsets

s-G1 Any additional work required to build a Smallset Timeline with smallsets—
on top of what is already required by the data preprocessing stage—should be
minimised.

s-G2 Any additional work that is required to build a Smallset Timeline with
smallsets should feel meaningful and productive to complete.

s-G3 Building a Smallset Timeline with smallsets should be easily integrable into
new or existing data preprocessing workflows.

Smallset Timelines

ST-G1 For data producers, creating the Smallset Timeline should encourage reflection
and reflexivity on data preprocessing decisions.

ST-G2 For data producers/consumers, reading the Smallset Timeline should support
the replicability and reproducibility of data preprocessing decisions.

ST-G3 For data consumers, reading the Smallset Timeline should support the com-
prehension and evaluation of data preprocessing decisions.

Table 7.1: The three design goals for the smallsets software and the Smallset Timeline
visualisation, first presented in Section 5.1 and Section 4.1, respectively.

the design goals and assumptions that shaped development of smallsets (and Smallset

Timelines). These design goals are listed in Table 7.1. The second reason was to inform

future software development efforts, such that they align with the needs and preferences of

data practitioners.

For this evaluation, the focus group method was selected. Focus groups provide an efficient

and meaningful way to collect qualitative data on peoples’ experiences, attitudes, opinions,

and preferences [Krueger and Casey, 2000]. In the context of this study, the focus group

format provided a formal means of connecting directly with prospective smallsets users,

i.e., data practitioners who preprocess data. Focus group questions were designed to initiate

discussion on the three areas of interest: 1) deployment context, 2) utility and usability, and

3) output (Smallset Timelines). Moreover, the data were analysed to check underlying design

7.2 Methods 102

goals and assumptions and to inform future work. As indicated previously, focus groups were

a first step in the evaluation process. Chapter 8 includes a discussion on future work involving

other modes of evaluation, such as user studies and semi-structured interviews.

7.2 Methods

This section describes the methodology used for the focus group study. The methodology

follows the recommendations and techniques proposed in Krueger and Casey [2000] and is

presented in five parts. This includes question development, recruitment and participants,

focus group procedures, audio transcription, and analysis of transcripts. The study proto-

col was approved by the Science and Medical Delegated Ethical Review Committee at the

Australian National University (ANU). Reciprocal approval was received from the Common-

wealth Scientific and Industrial Research Organisation (CSIRO).

7.2.1 Question development

The first step was preparing a list of questions to ask participants, during the focus group.

The purpose of these questions was to initiate discussion within a focus group, on the topics

of interest, and to assure some degree of consistency across focus groups, in terms of the

topics covered. Based on recommendations in Krueger and Casey [2000], the questions were

designed to be open-ended, conversational, and jargon-free and to elicit descriptions of specific

examples and experiences. Table 7.2 shows the question list prepared for this study. It

consists of seven questions (Q1-Q7), designed to begin with broad attention to preprocessing

and then narrow to focus on smallsets. The questions also ask participants to consider

preprocessing communication from the perspective of both data producer and consumer.

The reason for starting with broad questions was twofold. It could introduce the general

topic area and capture data on the smallsets deployment context. Then, in shifting the

focus to smallsets, data could be collected on the tool’s utility/usability and its output

the Smallset Timeline. To collect data on these different aspects of smallsets, participants

were asked to assume the perspective of data producer and data consumer. In Table 7.2, Q2

and Q5 pertain to data producers and are, respectively, about preprocessing communication

broadly and smallsets specifically. Q3 and Q6 pertain to data consumers and follow the

same broad to specific format.

7.2 Methods 103

Question
Est. time

(min.)

Welcome and introduction to the focus group study 2

Q1. What kind of data preprocessing do you do in your work? 6

Q2. Do you ever need to communicate your preprocessing decisions? If so,
tell me more about this.

8

Q3. Are there instances in which you need to learn about another person’s
preprocessing work? If so, what is that learning process like?

8

smallsets presentation 6

Q4. What are your initial impressions of the smallsets tool? 7

Q5. Imagine you are asked to use smallsets in your work. What challenges
come to mind?

10

Q6. Imagine a data analyst includes a Smallset Timeline as a figure in a
report. If you were reading this report, what might your response to
that figure be?

10

Q7. Do you have any final comments or thoughts you’d like to share? 3

Table 7.2: Focus group question outline.

7.2.2 Recruitment and participants

Thirteen participants were recruited through my professional network. Data practitioners

were invited by email to participate. Invitations were sent to 18 data practitioners. Fifteen

data practitioners accepted the invitation to participate; in the end, two were unable to

participate. Three data practitioners did not respond to the invitation. To be eligible for the

study, participants had to have data preprocessing experience and be fluent in the English

language. All invitees were sent a participant information sheet, which outlined the project

objective and study protocol. It also provided information about potential risks, voluntary

participation, withdrawal, confidentiality, etc. Those who decided to participate provided

written consent ahead of the focus group.

Recruited participants included a statistician, research scientist, software developer, epi-

7.2 Methods 104

demiologist, software engineer, medical student, research fellow, and PhD students. Partici-

pants had diverse disciplinary backgrounds and research interests, including machine learning,

the environment, digital humanities, and public health, to name a few. Participants were lo-

cated in Australia and the United States. The groupings were largely defined by participants’

availability to attend focus groups at certain times. There were focus groups where all, some,

or none of the participants knew each other. Three focus groups had three participants. One

focus group had four participants.

7.2.3 Focus group procedures

Four focus groups were conducted over the video conferencing platform Zoom, over the course

of two weeks in August 2023. Each focus group lasted approximately one hour and followed

the structure outlined in Table 7.2. Throughout the focus groups, probing questions were

used in moderation, as per the recommendation of Krueger and Casey [2000]; this is to leave

the majority of the time for discussion amongst participants. Following are two examples of

probing questions from the data. What do you think the importance of that particular piece

of information is? Can you explain more what you mean by that?

As noted in Table 7.2, a short smallsets presentation was given partway through the

focus group. The purpose of the presentation was to provide a basic overview of smallsets.

In other words, for this study, participants were not expected to have a comprehensive or

nuanced understanding of smallsets. Though, some participants did have prior exposure to

smallsets from research seminars and informal research discussions, and two participants

had previously tried using smallsets, of their own volition.

The smallsets presentation included a slideshow and live software demonstration. First,

the slideshow introduced the Smallset Timeline, the smallsets structured comments, and

the Smallset Timeline() command. The s data example—detailed in Appendix A—was

used for illustration. Participants were shown the example Smallset Timeline in Figure 4.1,

followed by the smallsets structured comments and code to produce it. Then, the live soft-

ware demonstration in RStudio reproduced Figure 4.1 with smallsets, and participants saw

something similar to the RStudio screenshot in Figure 5.1.1 Several of the optional arguments

1Note, however, that the study occurred before the most recent release of the smallsets software, version
2.0.0 (see Table 5.4). Focus group participants were instead presented the previous release of smallsets,
version 1.0.0. The key difference between versions 1.0.0 and 2.0.0 was the switch from snapshot instructions to
snapshot location arguments in the smallsets structured comments. This switch is illustrated in Figure 5.7.

7.2 Methods 105

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400

Words per data item

F
re

qu
en

cy

Figure 7.1: Frequency of different word counts of transcript data items, where a data item
refers to each time a participant took a turn speaking, not including the moderator.

for Smallset Timeline() were also featured—including rowCount, colours, printedData,

missingDataTints, and font (see Table 5.1)—to show customising a Smallset Timeline.

7.2.4 Audio transcription

After the focus groups, the first step was transcribing the audio of each focus group record-

ing. The video conferencing platform Zoom, used to host and record the focus groups,

automatically generated an audio transcript for each recording. These auto-generated tran-

scripts, however, contained errors that had to be manually identified and corrected. They also

required anonymisation and significant formatting. Preparing the transcripts (verbatim) re-

quired carefully listening to each focus group several times, resulting in familiarisation with

the data. Each participant was sent the de-identified transcript for their focus group, to

review and check for accuracy, if they preferred to do so.

Following are several summary statistics for the transcripts. Note that each turn a par-

ticipant took to speak was considered one data item, and the moderator’s turns were not

counted as data items. In total, there were 248 data items, which ranged in length from

one word to 408 words. Figure 7.1 is a histogram visualising the frequency of different word

7.3 Focus group findings 106

lengths across the data items. The average length of a data item was 75 words; the median

length was 56 words. All participants spoke at least 12 times; the median was 18 times.

7.2.5 Analysis of transcripts

The data were analysed by focus group question, for Q2-Q6. For each question, all relevant

data items were compiled, across transcripts. This included data items occurring later in the

focus group—after a subsequent question had been asked—but containing relevant content.

For instance, after Q5 was asked, P9 prefaced a comment as follows: “This doesn’t respond

exactly to the question you asked ..., but I just did want to add something to what [P10] said

before.” Because P9 was referring to what P10 said in Q4, that data item and the related data

items that followed were included in the Q4 analysis. Once consolidated, the data items for

a question were assessed for similarity in content, clustered accordingly, and summarised. As

suggested in Krueger and Casey [2000], special attention was paid to comments about specific

experiences or a matter raised by many different participants, especially across groups.

7.3 Focus group findings

In this section, findings from the focus group study are presented, by focus group question.

This includes Q2-Q6, listed in Table 7.2. First, findings for Q2 and Q3, which focused

on preprocessing communication broadly, are presented (Sections 7.3.1 and 7.3.2). Then,

findings for Q4-Q6, which focused on smallsets specifically, are presented (Sections 7.3.3

to 7.3.5). New ideas for smallsets—that were proposed and discussed by participants—are

also highlighted (Section 7.3.6). Throughout, references are made to the smallsets and

Smallset Timeline design goals, using the labels listed in Table 7.1 (e.g., label s-G1 refers to

smallsets design goal one). Participants are referred to by participant IDs (P1-P13).

7.3.1 Preprocessing communication: Data producers

The first key focus group question, Q2, was as follows: Do you ever need to communicate

your preprocessing decisions? If so, tell me more about this. It is a broad question, and

participants’ responses reflected this. Participants described varying amounts, types, and

modes of communication. Three notable aspects of Q2 are discussed below.

7.3 Focus group findings 107

Internal team-based communication

Many participants discussed internal team-based communication. For some, this appeared to

be the first type of preprocessing communication that came to mind, when asked Q2. Partic-

ipants talked about group projects, in which preprocessing details had to be discussed, for a

variety of reasons. This included checking decisions with a supervisor, deliberating the best

approach, handing over a prepared dataset, or ensuring consistency across team members’

work. Moreover, participants noted several different mediums for internally communicating

decisions, including documentation in code, conversations, and messaging.

Assumptions in preprocessing

Several participants mentioned the need to make assumptions while preprocessing and the

uncertainty this introduces to an analysis. One participant described needing to hastily

remember past assumptions, to verify them with a principal investigator, prior to an immi-

nent paper submission. Another participant mentioned disclosing preprocessing assumptions,

when communicating results, and advising caution in the use of results, given the assump-

tions. Another participant commented on the high prevalence of assumptions made during

preprocessing work. However, they felt it was often not feasible or appropriate, when writing

an academic article, to explain all of the assumptions made. Rather, they noted that sharing

the preprocessing code could suffice.

Varying amounts of external communication

In terms of external (or formal) communication, participants described communicating vary-

ing amounts of preprocessing information, ranging from none to some. Table 7.3 includes

five example data items on external communication, that highlight the spectrum of practices.

The items in Table 7.3 are ordered, approximately, from the least to the most communication.

Across these example data items, we can see a range of communication practices. Moreover,

we can see reasons, provided by participants, for why they communicate as little or as much

as they do. Reasons include assumptions about the impact (or lack thereof) of data prepro-

cessing decisions, an external lack of interest in preprocessing, the information needs of an

audience, and research norms/expectations.

7.3 Focus group findings 108

Example data items from Q2
Do you ever need to communicate your preprocessing decisions? If so, tell me more about this.

(Discussing a group project)
“It’s interesting because we are just writing up a paper about this one, and I don’t think
we actually included how we preprocess the data. I think we just jump straight into ‘This
is the data. These are the models that we used.’ And I think we didn’t actually bother. I
think it’s almost like kind of taken for granted that like some preprocessing has occurred
but it’s not significant. Do you know what I mean? Like it shouldn’t be impacting the
results.” (P2)

“So, I would say no. ... Nobody ever seems to ask for it. Yet sometimes it can be a massive
amount of code. ... there are times ... I will post it on GitHub, but I don’t think anybody
looks at it. The only person who looks at it is me for next time I’m doing something
similar, but nobody has ever asked me about it or for it.” (P7)

“So, if it’s ... an academic article or something, we might talk a little bit about the major
things that we’ve done to prepare the data for the X-Y-Z. But if it’s a report that we’re
giving to government or some other sort of report that we’ve been doing, we may not even
discuss it, not because we don’t want to, but it’s not the right audience for that sort of
discussion.” (P6)

(Responding to P12’s comment in the next row)
“...I’ll note that research-wise, at least in my side of like computer science and machine
learning, [they] are very relaxed in terms of documenting preprocessing. It’s usually just
a very smaller side and like an appendix section and usually not super detailed either, like
they’ll just say some type of normalisation was done.” (P11)

“Yeah, I have to. ... with text data, ... I guess preprocessing is a lot of cleaning of the
data. And because I’m doing this in the context of writing publications, it’s often you
do need to detail the preprocessing steps in quite a bit of detail generally speaking is the
expectation, in either an appendix or in the main body of an academic paper.” (P12)

Table 7.3: Five example data items from Q2 (see Table 7.2), that highlight a range of practices
for communicating data preprocessing decisions. Items are ordered, approximately, from the
least to the most communication. Blue text provides context, helpful for understanding the
data item. See Section 7.3.1 for a discussion.

7.3 Focus group findings 109

7.3.2 Preprocessing communication: Data consumers

The next question, Q3, was as follows: Are there instances in which you need to learn about

another person’s preprocessing work? If so, what is that learning process like? In the data,

there were two main situations, in which participants had to learn about another data prac-

titioner’s preprocessing work. The first was in the use of a dataset, already preprocessed

by another data practitioner; participants had to know how it was preprocessed, to use it

correctly. The second was in the recreation of a (preprocessed) dataset, for a benchmark-

ing task. Some participants detailed situations in which the preprocessing information they

needed was not publicly available. In turn, they had to track it down.

For a couple participants, this involved writing to paper authors privately, to request

more dataset information. Regarding an experience trying to uncover preprocessing details

for a benchmarking task, P1 said, “...there was a lot of missing preprocessing details that

you have to kind of find out for yourself.” P5 noted that, when working with datasets from

organisations, proximity could be beneficial in tracking down information: “If I know the

data custodian well and they have sort of good access to the data and that sort of stuff, I can

often get some kind of answer.” It is worth noting that efforts to track down information

were not always successful, resulting in a standstill or data practitioners proceeding—as best

they could—without it.

7.3.3 Impressions of smallsets

After the moderator’s presentation on smallsets, participants were asked Q4: What are

your initial impressions of the smallsets tool? Broadly, participants talked about the

use of visualisation, the smallsets structured comments, and/or envisioned use cases of

smallsets. Each topic is discussed below.

Visualisation

Many participants had a positive response to the use of visualisation. Responses ranged

from general enthusiasm for visualisation to specific comments about the Smallset Timeline,

e.g., “I think the colour boxes are very clean” (P1). An appreciation for visualisation was

expressed from both the perspective of data producer and data consumer. Speaking as a data

producer, P5 noted that they will sometimes visualise a subset of their tabular data during

7.3 Focus group findings 110

preprocessing, “...to sense check a few things,” and that smallsets seems like “...a nice

way of actually formalising that process.” Speaking as a data consumer, P9 said, “...I think

visualising it is much appreciated, relative to sort of having to go back through someone’s

script and trying to figure out whether they’ve ... commented what decisions they’ve made or

whether you just have to go through their code and figure something out.”

Structured comments

There was also interest in the smallsets structured comments. Several participants ex-

pected that adding them to code might result in better documentation within their code.

P8 said the following about having to insert structured comments, to get snapshots that

break preprocessing down into steps: “...I think that forces a linear, logical way of wrangling

data that then ... will ... I would say most likely lead to more linear, logical comments and

documentation on those steps that are going on.” One participant did wonder if the insertion

of smallsets structured comments could be automated, for lengthy preprocessing pipelines

with many steps. However, generally speaking, the smallsets structured comments were

seen as having value and not simply a means to an end. This finding provides some indication

that s-G2 and ST-G1 are being met (see Table 7.1).

Envisioned use cases

Q4 also generated data on envisioned use cases of smallsets. Notably, participants envi-

sioned using smallsets as a communication tool and a real-time preprocessing aid. For

example, referring to smallsets, P4 said, “...I would be primarily thinking about this as first

for myself and then for other people.” As a preprocessing aid, participants discussed using

smallsets to identify and diagnose problems in preprocessing and to understand how the

code they run changes their dataset. As a communication tool, participants envisioned using

Smallset Timelines in publications and discussions with a supervisor. Envisioned use cases,

though, were sometimes followed by a catch. Specifically, participants noted that smallsets

seemed useful, but there was a current limitation of the tool that would impede uptake of it

into their work. These catches are discussed next in Section 7.3.4.

7.3 Focus group findings 111

7.3.4 Uptake: Challenges and concerns

The next question, Q5, was as follows: Imagine you are asked to use smallsets in your

work. What challenges come to mind? Q5 aimed to gather information on barriers, that

would impede the uptake of smallsets into data workflows. Once identified, these barriers

can be addressed in future work, where possible, to better achieve s-G3 (see Table 7.1). The

Q5 findings are discussed below.

Limitations in smallsets functionality

Version 1.0.0 of smallsets had several key limitations in functionality. It was functional for

one tabular dataset at a time, only. All preprocessing code had to be contained in a single

script. Furthermore, complex operations overwriting row names in R were not supported

(see Section 5.4.4).2 Each of these limitations proved to be a barrier to uptake, for one or

more participants. Specifically, for participants working in the areas of digital humanities

and natural language processing, the primary issue is that smallsets cannot yet handle

unstructured text data. For both participants who had previously tried using smallsets in

their work, the requirement that all code be contained in a single script was the barrier to

uptake; their preprocessing code existed across multiple scripts. Some participants described

working with multiple datasets at once and using more complex operations like aggregations

and joins as well as chained and piped operations, which smallsets currently has no/limited

capacity to visualise.3

Time

One concern, raised by participants, was the time required to incorporate a new documen-

tation tool, such as smallsets, into a data workflow. For example, P10 said, “...if I have to

clean up the data at all to use smallsets, then that seems like that would be an upfront—it

would probably be worth it in the end—but the upfront cost to clean it up and use it, I could

see in the moment possibly not wanting to deal with it, if it has that at all.” In other words, if

integration of the tool into their workflow felt troublesome, it may deter them from using it.

P10’s statement resonated with another participant, who talked about wanting to produce

2These three limitations also exist in version 2.0.0 of smallsets.
3For example, smallsets can take snapshots of a data object before and after a piped operation, but it

cannot capture intermediate states within a piped operation (see Listing B.5, as an example).

7.3 Focus group findings 112

documentation but having limited time to do so. This concern about time—and potential

hassles associated with using smallsets in one’s work—underscores the necessity of s-G1,

s-G2, and s-G3 and the importance of achieving them (see Table 7.1).

Miscellaneous concerns

One participant noted that the Smallset Timeline’s horizontal layout could pose problems in

two-column articles, in which figures are limited to half the page width. Another concern was

that adding smallsets structured comments, alongside other comments in the code, could

lead to a cluttered preprocessing script. There would be too many comments overall, likely

with redundant content. Both concerns have since been addressed, in the most recent release

of the smallsets software, version 2.0.0 (see Table 5.4). Firstly, there is now an option to

arrange Smallset Timelines vertically (see Table 5.1); snapshots are plotted top to bottom,

and captions are located to the right of snapshots. Secondly, to avoid comment clutter, users

can place a block of smallsets structured comments at the top of a script, separate from

the code and other comments (see Figure 5.3). Additional concerns about the Smallset are

discussed in Section 7.3.5.

7.3.5 Reactions to Smallset Timelines

The next question, Q6, aimed to collect data on the Smallset Timeline. Participants were

asked to assume the perspective of data consumer: Imagine a data analyst includes a Smallset

Timeline as a figure in a report. If you were reading this report, what might your response

to that figure be? Discussion for Q6 centred around two main topics: accessibility and the

Smallset. Each is detailed below.

Accessibility

Participants discussed how the Smallset Timeline could make preprocessing information more

accessible and the benefits from this. One participant commented that by presenting the

process in steps, the Smallset Timeline could make it easier to comprehend the extent of the

preprocessing work. Another participant thought that having the visualisation would enable

them to ask more insightful questions about a data producer’s preprocessing decisions. P6

noted that, when included as a figure in a publication, the Smallset Timeline “encodes”

7.3 Focus group findings 113

dataset and preprocessing information into a paper, so there is some long-term access to it.

This is regardless of what happens to the dataset after the paper is published.

Several participants discussed the relationship between accessibility and trust. Specif-

ically, the Smallset Timeline was viewed as a way for data producers to be candid about

dataset changes, with positive outcomes. For example, P7 said that if a data producer in-

cluded a Smallset Timeline in a paper, it would “...increase my confidence that they knew what

they were doing.” This comment resonated with other participants in the group. They appre-

ciated the idea of data producers showing the steps—in snapshots with tracked changes—as

opposed to telling them in purely text-based descriptions. P8 said, “You wouldn’t just have

to like take people’s word for it on how they wrangled. It would actually just, you know, be

there to see.”

The Smallset

Upon seeing a Smallset Timeline, some participants expected to have questions about the

Smallset.4 To start, how was the Smallset selected? P9 said, “I think it’d be good if it

was included in a paper to include a description of how the actual Smallset was selected.”

The concern was that a data producer could strategically select a set of rows that only tells

a partial (and biased) story about preprocessing. Other participants expected they would

have questions about the Smallset’s representativeness; these questions stem, in part, from

interests in the broad-scale effects of preprocessing decisions. However, the Smallset is not

designed to be a representative sample of the full dataset (see Section 4.2.1). Thus, these

questions about representativeness underscore the importance of the previous point, about

communicating the Smallset selection method. A clear explanation of the Smallset selection

method can help to minimise confusion about the meaning of a Smallset.

7.3.6 New information and features

Throughout the focus groups, participants discussed new ideas for smallsets. There were

pieces of preprocessing information, not presently captured in the Smallset Timeline, that

participants imagined could be useful to have, in understanding preprocessing. This included

compute time, memory use, variable types, and column classes. This also included summary

4The Smallset is discussed in depth in Section 4.2.1. Automated Smallset selection methods are presented
in Section 4.3.

7.4 Discussion 114

statistics about the dataset, which could be presented at different points in a Smallset Time-

line, such as before, during, and/or after preprocessing. Adding more description about the

decision-making process and the option to document and compare alternative decisions was

also mentioned.

Some participants wanted features that would enable them to assess and communicate

the broader effects of their preprocessing decisions on the dataset and overall analytical

objective. Participants discussed increasing the granularity of the colour legend and assigning

colours to specific preprocessing tasks. One participant imagined how to visualise parallel

processing and considered the visualisation of multiple Smallsets simultaneously. Developing

an interactive version of the Smallset Timeline was also discussed. Interactive elements

included hovering over the visualisation to reveal additional dataset information and the

option to link snapshots to segments of code (e.g., users click a snapshot to see the related

preprocessing code).

7.4 Discussion

To summarise, this chapter presented a focus group study on the smallsets software tool.

The study involved four focus groups, with a total of 13 data practitioners with preprocessing

experience. The focus groups generated qualitative data on three aspects of smallsets, in-

cluding its deployment context, utility/usability, and output (the Smallset Timeline). These

data provide insight into how prospective users view smallsets and where to direct future

software development efforts, for smallsets. This chapter ends with a discussion on the

limitations of the study (Section 7.4.1) and the key takeaways from it (Section 7.4.2).

7.4.1 Limitations

This focus group study is subject to several limitations. Participants were recruited through

one person’s professional network, and the moderator was not an independent third-party.

Both of these factors could have influenced the level of comfort that participants felt to

express negative opinions about smallsets. Note that during the welcome/introduction (see

Table 7.2), the focus group was framed in part as a request for help, to make smallsets a

better tool for data practitioners, at large. Moreover, as indicated in Section 7.3, participants

did express concerns, identify problems with uptake, and share ideas to enhance smallsets.

7.4 Discussion 115

Regardless, the lack of a independent third-party moderator is a factor to consider, when

considering the focus group findings.

Another limitation is that participants did not use or test smallsets themselves, during

the focus group.5 Rather, feedback was largely based on what participants had heard about

smallsets from the moderator and seen in a short demonstration of the tool. If trying the

tool themselves, participants may have identified additional issues or concerns, not obvious

from the smallsets presentation. Future work can involve user studies, in which participants

interact with smallsets.

This focus group study is also subject to recognised limitations of the focus group method,

including the effects of group dynamics [Krueger and Casey, 2000]. For example, some

participants may have hesitated to express dissenting opinions or share difficult experiences.

Future work can involve semi-structured (one-on-one) interviews with data practitioners, to

learn more about experiences with preprocessing communication.

Finally, participation in the study was limited to data practitioners, and in particular,

those with data preprocessing experience. However, the Smallset Timeline is also designed for

data consumers who are not data practitioners and/or who do not have firsthand data pre-

processing experience. For this segment of data consumers, the Smallset Timeline is designed

to support comprehension and evaluation of data practitioners’ preprocessing decisions (see

Table 4.1). Future evaluations can be more inclusive of all intended Smallset Timeline users.

7.4.2 Key takeaways

Following are several key takeaways from this focus group study on smallsets.

• Many participants described needing to communicate and discuss data preprocessing

decisions internally with team members, collaborators, and supervisors. The means of

internal communication varied, from documenting code to having conversations.

• The amount of external (formal) preprocessing communication practised by participants

ranged from none to some. Furthermore, participants gave different reasons for why

they communicate as little or as much as they do.

5Two of the participants had previously tried using smallsets, of their own volition. However, the
majority of participants had never tried the tool.

7.4 Discussion 116

• Speaking as data consumers, participants described challenging situations trying to

track down preprocessing details—that were not publicly available—to either under-

stand or reproduce a preprocessed dataset, for use in a new analysis.

• Many participants had a positive response to the smallsets structured comments and

saw this aspect of smallsets as valuable in and of itself. Moreover, there was significant

interest in using smallsets not only as a communication tool but also as a real-time

preprocessing aid.

• Participants pointed to current limitations of smallsets that would impede uptake.

This included the lack of functionality for non-tabular data, multiple preprocessing

scripts, and more complex operations like data joins. The time required to learn and

use smallsets could also be a barrier to uptake.

• Many participants liked the use of visualisation, to communicate preprocessing deci-

sions. Participants weighed the upsides and downsides of using a Smallset, to explain a

preprocessing pipeline. On the one hand, it makes the information accessible. On the

other hand, it does not capture the broader effects of data preprocessing decisions.

Acknowledgement. Future improvements to smallsets will be in large part thanks to the

input and feedback from the 13 focus groups participants. I am grateful to all participants for

sharing their time, experiences, opinions, and thoughts, to help the project progress.

Chapter 8

Conclusion

This chapter summarises the contributions of the thesis (Section 8.1) and discusses future

work (Section 8.2).

8.1 Summary

Data preprocessing is a crucial part of many data analyses. Moreover, it often requires data

practitioners to make difficult decisions about how to resolve dataset issues and prepare

their dataset for the subsequent estimation or modelling task. Yet, data preprocessing is

often overlooked in research dissemination. This discrepancy—in how data analytics is con-

ducted in private versus how it is presented in public—limits the ability of data consumers

to interpret, replicate, and evaluate research findings from quantitative analyses. In turn,

this thesis focuses on the communication of data preprocessing decisions and makes several

contributions in this area.

This thesis presents a novel visualisation of data preprocessing decisions called the Small-

set Timeline. The visualisation is designed to be static and compact, for simplicity, practical-

ity, and accessibility. It can be included in academic publications, blog posts, README files,

etc., to communicate preprocessing choices. It can also be used to answer the preprocessing

questions and prompts in the data provenance tools proposed for machine learning research,

such as datasheets [Gebru et al., 2021] and model cards [Mitchell et al., 2019]. For example,

117

8.1 Summary 118

33. Was any preprocessing/cleaning/labeling of the data done (e.g.,
discretization or bucketing, tokenization, part-of-speech tagging, SIFT
feature extraction, removal of instances, processing of missing values)?
If so, please provide a description. If not, you may skip the remaining
questions in this section.

act
ion

eth
_1
eth

_2
eth

_3
rac

e_
1

rac
e_

2
rac

e_
3

rac
e_

4
rac

e_
5

3
3
1
1
1
1
1

2
3
1
3
2
2
3

12

2
5
6
5
5
1
6

2226

For our audit, we must first
preprocess the 2019 HMDA
data for Philadelphia County.
The dataset includes loans
categorised as conventional,
first lien, home purchase, single
family, site-built,
non-commercial, and not a
preapproval. Original column
names have been abbreviated,
e.g., applicant_race-1 –> race_1,
application_ethnicity-1 –>
eth_1, and action_taken –>
action. The eth_4 and eth_5
columns were excluded because
applicants only specified at
most three ethnicities. The
dataset contains 11,008 rows.
Seven rows were selected, from
a 5% random sample (n=550),
using the coverage+variety
optimisation algorithm provided
in the smallsets software.

act
ion

eth
_1
eth

_2
eth

_3
h_

l
rac

e_
1

rac
e_

2
rac

e_
3

rac
e_

4
rac

e_
5

white

0
0

0

1

0
1

1
1
0

3
3
1
1
1
1
1

2
3
1
3
2
2
3

12

6

222
5
6
5
5
1

26

We first classify who is
non-Hispanic/Latino White and
Hispanic/Latino White.
Individuals can specify one or
more races (race_1-5) and one
or more ethnicities (eth_1-3).
We create a dummy variable for
White, where white = 1 if an
applicant only selects White
(race = 5) (e.g., an applicant
with White (race_1 = 5) and
Asian (race_2 = 2) would be
white = 0). We also create a
dummy variable for
Hispanic/Latino (h_l), where h_l
= 1 if an applicant selects
Hispanic or Latino (eth = 1) or a
specific origin group (eth =
11-14), and h_l = 0 for the
selection of not Hispanic or
Latino (eth = 2).

act
ion

eth
_1
eth

_2
eth

_3
h_

l
rac

e_
1

rac
e_

2
rac

e_
3

rac
e_

4
rac

e_
5

white

3 022

1
1

22 26

2
36

0

0
1 00

0

0
1

1 02
5
5

3
1
1

3
1
3

12 16

1

1

1

5

For the 17.9% (n=144) of
Hispanics/Latinos missing race
data (race = 6 (info not
provided), 7 (info not
applicable), or NA (info not
available)), we impute White
(white = 1), as the majority of
Hispanics/Latinos in the dataset
(82%) are White (white = 1).
For the 2.6% (n=138) of Whites
missing ethnicity data (eth = 3
(info not provided) or NA (info
not available)), we impute
non-Hispanic/Latino (h_l = 0),
as the majority of Whites in the
dataset (89%) are
non-Hispanic/Latino (h_l = 0).
After imputing missing race and
ethnicity values, we subset to
those classified as White (white
= 1).

act
ion

den
y

eth
_1
eth

_2
eth

_3
h_

l
rac

e_
1

rac
e_

2
rac

e_
3

rac
e_

4
rac

e_
5

white

0

1
0
0

0

3
1
1
12

5
5

12 1
0

3
1
3

0
6

1
1
1
1

5

From the action variable, we
create a dummy variable for
denied loans (deny), where
deny = 1 if the application was
denied (action = 3). Loans are
considered approved (deny = 0)
if the loan originated (action =
1) or the application was
approved but not accepted
(action = 2). The preprocessed
dataset consists of 6,157
applicants.

*A lighter value indicates a missing data value
Added* Deleted* Edited Unchanged*

Figure 8.1: Example of question 33 from a datasheet [Gebru et al., 2021] being answered
with a Smallset Timeline, built with smallsets. The Smallset Timeline used as an example
above is from case study 4, on Home Mortgage Disclosure Act (HMDA) data, in Section 6.4.

a Smallset Timeline could be used to answer question 33 in a datasheet (see Figure 8.1). This

recommendation is supported by findings from the focus group study presented in Chapter 7,

in which some participants expressed a preference for visual explanations of preprocessing

steps, as opposed to purely text-based descriptions.

To make building Smallset Timelines simple and easy, this thesis presents the open-

source software tool smallsets. It is an R CRAN package that transforms R or Python

preprocessing code in an R, R Markdown, Python, or Jupyter Notebook file into a Smallset

Timeline. Users add structured comments with snapshot instructions to their preprocessing

code and run the Smallset Timeline() command. Within that command, there are options

8.2 Future work 119

to customise different aspects of the visualisation. Several resources have been developed for

smallsets users, including a user guide, cheatsheet, and website.

To demonstrate use of the smallsets tool, this thesis presents four data preprocessing

case studies. The case studies resulted in a total of six example Smallset Timelines visu-

alising real-world preprocessing scenarios (Figures 6.1 to 6.4, 6.8 and 6.9). From machine

learning benchmark datasets to citizen science data for statistical modelling, these case stud-

ies are diverse. However, all four case studies underscore the importance of communicating

data preprocessing decisions. Two of the four case studies include quantifying the effects of

preprocessing decisions on analytical outcomes.

Finally, this thesis presents a focus group study. The study was designed to gather

feedback on smallsets from prospective users. The focus group findings detail strengths

and weaknesses of the smallsets tool and how it can be improved to best meet the needs

of data practitioners in their everyday work. The findings also offer insights into experiences

with and attitudes towards preprocessing communication.

8.2 Future work

There are several different areas of future work, related to Smallset Timelines, smallsets,

and data preprocessing, at large. The items below are ordered accordingly.

• Redesign of Smallset Timelines for other data types. Presently, the Smallset

Timeline is designed for tabular data. Future work could involve redesigning the vi-

sualisation for other types of data, such as text and image data. This would involve

rethinking the configuration of the Smallset and the categories of changes, highlighted

in Smallset snapshots.

• Statistical summaries and diagrams with Smallset Timelines. Another area of

future work, related to Smallset Timelines, is the incorporation of statistical diagrams

and summaries into the visualisation, to communicate broad effects from preprocessing.

For example, if a snapshot visualises the transformation of a variable, could there be a

histogram above the snapshot showing the distribution of the variable before and after

the transformation? Or could a simple table with statistical summaries be included

below each snapshot caption? It may be that statistical diagrams and summaries

8.2 Future work 120

should be included separately, however, to preserve the simplicity and compact size of

the Smallset Timeline.

• Expansion of the smallsets software. In the focus group study presented in Chap-

ter 7, participants noted several key hurdles to the uptake of smallsets. This included

that smallsets cannot currently handle multiple preprocessing scripts and more com-

plex operations such as merges and aggregations. Addressing these hurdles will be a

top priority of future smallsets work. Another important area of future work is pro-

viding full support for the creation of non-English Smallset Timelines. Currently, users

can write snapshot captions in other languages, but the labels for the colour legend are

hard-coded in English, as is the automated alt text template (Figure 4.9).

Section 4.3.1 of the thesis presented two optimisation models for Smallset selection.

Future work could also involve the development of additional automated Smallset se-

lection methods. One focus, in particular, could be on developing fully open-source

methods that do not require a smallsets user to obtain a Gurobi license. Methods

that perform column selection in addition to row selection could also be useful.

• User studies for the smallsets software. In the focus group study presented in

Chapter 7, the majority of participants were providing feedback on smallsets based

on what they had heard and seen in presentations/demonstrations of the tool. Only

two participants had tried using the tool. Future work could involve a user study, in

which users engage with the software tool themselves and provide feedback based on

that experience. This could result in improvements to the usability of smallsets and

to the software’s help documentation.

• Assistance for smallsets caption writing. The main task of smallsets users is to

write snapshot captions for the Smallset Timeline. Table 4.1 and Section 4.2.1 provide

some guidance on caption-writing, but future work could further explore what prepro-

cessing content, in particular, data consumers find most useful, in different settings.

Those content needs could be translated into a series of caption-writing guidelines and

prompts for Timeline creators.

• Development of a reflexivity guide for data preprocessing. In Chapter 4, one

of the design goals of the Smallset Timeline is to encourage the practice of reflexivity

8.3 Concluding note 121

(Table 4.1), which aligns with a recent push to incorporate reflexivity into quantitative

research [D’Ignazio and Klein, 2020, Miceli et al., 2021, Tanweer et al., 2021]. Re-

flexivity is a well-established concept and practice in qualitative research but remains

largely unfamiliar to many quantitative researchers. One area of future work is writing

a reflexivity guide for data preprocessing, specifically. The guide could introduce the

concept of reflexivity and include questions that prompt reflexive practices. It could

be included as a vignette within the smallsets software, so that it could be easily

accessed through the vignette() command in R.

• Qualitative research on data preprocessing practices. Another area of future

work is conducting ethnographic research on data preprocessing. It could involve ex-

tended observation of data practitioners as they preprocess data, as well as interviews

with data practitioners on the topic of their data preprocessing work. It could be

conducted in different research sectors, including academia, industry, government, etc.

This type of research could provide further insight into the nature of data preprocessing

work and the ways in which data practitioners make data preprocessing decisions.

8.3 Concluding note

As mentioned at the very beginning of this thesis, data preprocessing typically does not have

a reputation as being the exciting or interesting part of data analytics. However, the hope is

that this thesis sheds light on the importance, challenge, and impact of data preprocessing

work. Moreover, the hope is that smallsets can serve as a highly practical tool, that equips

data producers to be transparent about critical data preprocessing decisions.

Bibliography

JJ Allaire, Yihui Xie, Christophe Dervieux, Jonathan McPherson, Javier Luraschi, Kevin

Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, Winston Chang, and Richard Iannone.

rmarkdown: Dynamic Documents for R, 2023. R package version 2.25. (cited on pages 69

and 72)

Matthew Arnold, Rachel KE Bellamy, Michael Hind, Stephanie Houde, Sameep Mehta,

Aleksandra Mojsilović, Ravi Nair, K Natesan Ramamurthy, Alexandra Olteanu, David

Piorkowski, et al. FactSheets: Increasing trust in AI services through supplier’s declara-

tions of conformity. IBM Journal of Research and Development, 63(4/5):6–1, 2019. (cited

on page 28)

Australian Bureau of Statistics. Data processing. 2023. URL https://www.abs.gov.au/w

ebsitedbs/D3310114.nsf/home/Basic+Survey+Design+-+Data+Processing. Accessed:

June 6, 2023. (cited on page 35)

Robert Avery, Kenneth Brevoort, and Glenn Canner. Opportunities and issues in using

HMDA data. Journal of Real Estate Research, 29(4):351–380, 2007. (cited on pages 25

and 96)

Louis Bavoil, Steven P Callahan, Patricia J Crossno, Juliana Freire, Carlos E Scheidegger,

Cláudio T Silva, and Huy T Vo. VisTrails: enabling interactive multiple-view visualiza-

tions. In VIS 05. IEEE Visualization, 2005., pages 135–142, 2005. (cited on page 29)

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. URL

https://doi.org/10.24432/C5XW20. (cited on page 89)

Colin Begg, Mildred Cho, Susan Eastwood, Richard Horton, David Moher, Ingram Olkin,

Roy Pitkin, Drummond Rennie, Kenneth F. Schulz, David Simel, and Donna F. Stroup.

Improving the quality of reporting of randomized controlled trials: The CONSORT state-

ment. JAMA, 276(8):637–639, 1996. (cited on page 30)

Emily M Bender and Batya Friedman. Data statements for natural language processing:

122

https://www.abs.gov.au/websitedbs/D3310114.nsf/home/Basic+Survey+Design+-+Data+Processing
https://www.abs.gov.au/websitedbs/D3310114.nsf/home/Basic+Survey+Design+-+Data+Processing
https://doi.org/10.24432/C5XW20

Bibliography 123

Toward mitigating system bias and enabling better science. Transactions of the Association

for Computational Linguistics, 6:587–604, 2018. (cited on page 28)

Avinash Bhat, Austin Coursey, Grace Hu, Sixian Li, Nadia Nahar, Shurui Zhou, Christian

Kästner, and Jin L.C. Guo. Aspirations and practice of ML model documentation: Moving

the needle with nudging and traceability. In Proceedings of the 2023 CHI Conference on

Human Factors in Computing Systems. Association for Computing Machinery, 2023. (cited

on page 28)

Alexander W. Blocker and Xiao-Li Meng. The potential and perils of preprocessing: Building

new foundations. Bernoulli, 19(4):1176 – 1211, 2013. (cited on pages 26 and 35)

Christian Bors, Theresia Gschwandtner, and Silvia Miksch. Capturing and visualizing prove-

nance from data wrangling. IEEE Computer Graphics and Applications, 39(6):61–75, 2019.

(cited on page 29)

Geoffrey Boulton, Philip Campbell, Brian Collins, Peter Elias, Wendy Hall, Graeme Laurie,

Onora O’Neill, Michael Rawlins, Janet Thornton, Patrick Vallance, et al. Science as an

open enterprise. The Royal Society, 2012. (cited on pages 18 and 19)

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. (cited on page 83)

Brian Burns, James Lamb, and Jay Qi. pkgnet: Get Network Representation of an R Package,

2021. R package version 0.4.2. (cited on pages 10 and 70)

Scott Chamberlain and Kyle Voytovich. charlatan: Make Fake Data, 2020. R package version

0.4.0. (cited on page 136)

Gábor Csárdi and Winston Chang. callr: Call R from R, 2022. R package version 3.7.3.

(cited on pages 69 and 72)

Alim Dayim. consort: Create Consort Diagram, 2023. R package version 1.2.1. (cited on

page 30)

Matthew J. Denny and Arthur Spirling. Text preprocessing for unsupervised learning: Why

it matters, when it misleads, and what to do about it. Political Analysis, 26(2):168–189,

2018. (cited on pages 17, 24, 25, 26, 27, and 35)

Bibliography 124

Matthew J. Denny and Arthur Spirling. preText: Diagnostics to Assess the Effects of Text

Preprocessing Decisions, 2021. R package version 0.7.2. (cited on page 26)

Catherine D’Ignazio and Lauren F Klein. Data Feminism. MIT press, 2020. (cited on

pages 39 and 121)

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring Adult: New datasets

for fair machine learning. Advances in Neural Information Processing Systems, 34:6478–

6490, 2021. (cited on pages 17, 27, 81, 89, 90, 91, and 93)

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness

through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science

Conference, pages 214–226, 2012. (cited on pages 91 and 92)

eBird. eBird: An online database of bird distribution and abundance [web application].

Cornell Lab of Ornithology, Ithaca, New York, 2023. URL http://www.ebird.org.

(cited on page 87)

Madeleine Clare Elish and danah boyd. Situating methods in the magic of big data and AI.

Communication monographs, 85(1):57–80, 2018. (cited on page 39)

Fair Housing Act. 42 U.S.C. 3601-3619, 1968. URL https://www.law.cornell.edu/usco

de/text/42/chapter-45/subchapter-I. (cited on page 96)

A. Famili, Wei-Min Shen, Richard Weber, and Evangelos Simoudis. Data preprocessing and

intelligent data analysis. Intelligent Data Analysis, 1(1):3–23, 1997. (cited on pages 24,

32, and 33)

Paul Fitzpatrick, Edwin de Jonge, and Gregory R. Warnes. daff: Diff, Patch and Merge for

Data.frames, 2023. R package version 1.0.1. (cited on page 43)

Sorelle A. Friedler, Carlos Scheidegger, Suresh Venkatasubramanian, Sonam Choudhary,

Evan P. Hamilton, and Derek Roth. A comparative study of fairness-enhancing interven-

tions in machine learning. In Proceedings of the Conference on Fairness, Accountability,

and Transparency, pages 329–338. Association for Computing Machinery, 2019. (cited on

pages 17 and 27)

http://www.ebird.org
https://www.law.cornell.edu/uscode/text/42/chapter-45/subchapter-I
https://www.law.cornell.edu/uscode/text/42/chapter-45/subchapter-I

Bibliography 125

Salvador Garćıa, Julián Luengo, and Francisco Herrera. Data Preprocessing in Data Mining.

Springer, 2015. (cited on pages 24 and 32)

Brodie Gaslam. diffobj: Diffs for R Objects, 2021. R package version 0.3.5. (cited on page 43)

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna

Wallach, Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. Communications of

the ACM, 64(12):86–92, 2021. (cited on pages 12, 19, 28, 117, and 118)

Baljinder Ghotra, Shane McIntosh, and Ahmed E Hassan. Revisiting the impact of classi-

fication techniques on the performance of defect prediction models. In 2015 IEEE/ACM

37th IEEE International Conference on Software Engineering, volume 1, pages 789–800,

2015. (cited on pages 17, 27, and 83)

Lisa Gitelman, editor. “Raw Data” Is an Oxymoron. MIT press, 2013. (cited on page 34)

David Gohel and Panagiotis Skintzos. flextable: Functions for Tabular Reporting, 2023. R

package version 0.9.2. (cited on pages 69 and 74)

David Goodger and Guido van Rossum. Pep 257 – docstring conventions, 2001. URL

https://www.python.org/dev/peps/pep-0257/. Accessed: May 20, 2024. (cited

on page 58)

David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. The misuse of the

NASA Metrics Data Program data sets for automated software defect prediction. In 15th

Annual Conference on Evaluation & Assessment in Software Engineering (EASE 2011),

pages 96–103, 2011. (cited on pages 11, 25, 82, 83, and 84)

David Gray, David Bowes, Neil Davey, Yi Sun, and Bruce Christianson. Reflections on the

NASA MDP data sets. IET Software, 6(6):549–558, 2012. (cited on pages 25, 82, and 83)

Gurobi Optimization, LLC. gurobi: Gurobi Optimizer 9.1 Interface, 2021. R package version

9.1-2. (cited on pages 63 and 69)

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.

gurobi.com. (cited on pages 51 and 63)

https://www.python.org/dev/peps/pep-0257/
https://www.gurobi.com
https://www.gurobi.com

Bibliography 126

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A systematic lit-

erature review on fault prediction performance in software engineering. IEEE Transactions

on Software Engineering, 38(6):1276–1304, 2011. (cited on page 82)

Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning.

Advances in Neural Information Processing Systems, 29, 2016. (cited on page 91)

Jim Hester. covr: Test Coverage for Packages, 2023. R package version 3.6.4. (cited on

page 75)

Sarah Holland, Ahmed Hosny, Sarah Newman, Joshua Joseph, and Kasia Chmielinski. The

Dataset Nutrition Label: A framework to drive higher data quality standards. arXiv

preprint arXiv:1805.03677, 2018. (cited on pages 19 and 28)

Alison Johnston, Wesley M Hochachka, Matthew E Strimas-Mackey, Viviana Ruiz Gutierrez,

Orin J Robinson, Eliot T Miller, Tom Auer, Steve T Kelling, and Daniel Fink. Analytical

guidelines to increase the value of community science data: An example using eBird data to

estimate species distributions. Diversity and Distributions, 27(7):1265–1277, 2021. (cited

on pages 17, 25, 27, and 87)

Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: interac-

tive visual specification of data transformation scripts. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 3363–3372. Association for

Computing Machinery, 2011. (cited on page 29)

Sayash Kapoor, Emily M. Cantrell, Kenny Peng, Thanh Hien Pham, Christopher A. Bail,

Odd Erik Gundersen, Jake M. Hofman, Jessica Hullman, Michael A. Lones, Momin M. Ma-

lik, Priyanka Nanayakkara, Russell A. Poldrack, Inioluwa Deborah Raji, Michael Roberts,

Matthew J. Salganik, Marta Serra-Garcia, Brandon M. Stewart, Gilles Vandewiele, and

Arvind Narayanan. REFORMS: Consensus-based recommendations for machine-learning-

based science. Science Advances, 10(18):eadk3452, 2024. (cited on page 28)

Stephen Kasica, Charles Berret, and Tamara Munzner. Table scraps: An actionable frame-

work for multi-table data wrangling from an artifact study of computational journalism.

IEEE Transactions on Visualization and Computer Graphics, 27(2):957–966, 2021. (cited

on pages 35 and 43)

Bibliography 127

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI Machine Learning Repos-

itory, 2023. URL http://archive.ics.uci.edu/ml. (cited on page 89)

Meraj Khan, Larry Xu, Arnab Nandi, and Joseph M Hellerstein. Data tweening: incremental

visualization of data transforms. Proceedings of the VLDB Endowment, 10(6):661–672,

2017. (cited on page 29)

Richard A. Krueger and Mary Anne Casey. Focus Groups: A Practical Guide for Applied

Research. SAGE Publications, 2000. (cited on pages 101, 102, 104, 106, and 115)

Sam Lau, Sean Kross, Eugene Wu, and Philip J. Guo. Teaching data science by visualizing

data table transformations: Pandas tutor for Python, tidy data tutor for R, and SQL

tutor. In DataEd ’23: Proceedings of the 2nd International Workshop on Data Systems

Education: Bridging education practice with education research, pages 50–55. Association

for Computing Machinery, 2023. (cited on page 42)

Erin Leahey. The role of status in evaluating research: The case of data editing. Social

Science Research, 33(3):521–537, 2004. (cited on pages 18 and 35)

Erin Leahey. Overseeing research practice: The case of data editing. Science, Technology, &

Human Values, 33(5):605–630, 2008. (cited on page 18)

Jim Lemon. Plotrix: a package in the red light district of R. R-News, 6(4):8–12, 2006. (cited

on page 69)

Barbara Lerner. provSummarizeR: Summarizes Provenance Related to Inputs and Outputs

of a Script or Console Commands, 2022. R package version 1.5.1. (cited on page 29)

Barbara Lerner, Emery Boose, Orenna Brand, Aaron M. Ellison, Elizabeth Fong, Matthew

Lau, Khanh Ngo, Thomas Pasquier, Luis A. Perez, Margo Seltzer, Rose Sheehan, and

Joseph Wonsil. Making provenance work for you. The R Journal, 14:141–159, 2023.

(cited on page 28)

Barbara S. Lerner and Emery R. Boose. RDataTracker: Collecting provenance in an inter-

active scripting environment. In Proceedings of TAPP 2014, 2014. (cited on pages 29

and 30)

http://archive.ics.uci.edu/ml

Bibliography 128

Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. Benchmarking clas-

sification models for software defect prediction: A proposed framework and novel findings.

IEEE Transactions on Software Engineering, 34(4):485–496, 2008. (cited on page 83)

Roderick J. Little, Ralph D’Agostino, Michael L. Cohen, Kay Dickersin, Scott S. Emerson,

John T. Farrar, Constantine Frangakis, Joseph W. Hogan, Geert Molenberghs, Susan A.

Murphy, James D. Neaton, Andrea Rotnitzky, Daniel Scharfstein, Weichung J. Shih, Jay P.

Siegel, and Hal Stern. The prevention and treatment of missing data in clinical trials. New

England Journal of Medicine, 367(14):1355–1360, 2012. (cited on page 17)

Karen Lumsden, Jan Bradford, and Jackie Goode. Introduction: The reflexive turn and the

social sciences. In Reflexivity, pages 1–24. Routledge, 2019. (cited on page 39)

Natasha S. Mauthner and Andrea Doucet. Reflexive accounts and accounts of reflexivity in

qualitative data analysis. Sociology, 37(3):413–431, 2003. (cited on page 39)

T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):

308–320, 1976. (cited on page 82)

Patricia McCoy. The Home Mortgage Disclosure Act: A synopsis and recent legislative

history. Journal of Real Estate Research, 29(4):381–398, 2007. (cited on page 96)

Xiao-Li Meng. Enhancing (publications on) data quality: Deeper data minding and fuller

data confession. Journal of the Royal Statistical Society: Series A (Statistics in Society),

2021. (cited on page 18)

Milagros Miceli, Tianling Yang, Laurens Naudts, Martin Schuessler, Diana Serbanescu, and

Alex Hanna. Documenting computer vision datasets: An invitation to reflexive data prac-

tices. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Trans-

parency, pages 161–172, 2021. (cited on pages 18, 39, and 121)

Alan Mislove, Sune Lehmann, Yong-Yeol Ahn, Jukka-Pekka Onnela, and J. Rosenquist.

Understanding the demographics of Twitter users. Proceedings of the International AAAI

Conference on Web and Social Media, 5(1):554–557, 2021. (cited on pages 18 and 33)

Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben

Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. Model cards for

Bibliography 129

model reporting. In Proceedings of the conference on fairness, accountability, and trans-

parency, pages 220–229, 2019. (cited on pages 19, 28, and 117)

David Moher, Kenneth F Schulz, and Douglas G Altman. The CONSORT statement: revised

recommendations for improving the quality of reports of parallel-group randomised trials.

The Lancet, 357(9263):1191–1194, 2001. (cited on page 30)

Kirill Müller and Hadley Wickham. tibble: Simple Data Frames, 2023. R package version

3.2.1. (cited on page 87)

Robert G Newcombe. Two-sided confidence intervals for the single proportion: comparison

of seven methods. Statistics in Medicine, 17(8):857–872, 1998. (cited on pages 11 and 92)

Christina Niederer, Holger Stitz, Reem Hourieh, Florian Grassinger, Wolfgang Aigner, and

Marc Streit. TACO: visualizing changes in tables over time. IEEE Transactions on Visu-

alization and Computer Graphics, 24(1):677–686, 2017. (cited on page 43)

Orestis Papakyriakopoulos, Anna Seo Gyeong Choi, William Thong, Dora Zhao, Jerone

Andrews, Rebecca Bourke, Alice Xiang, and Allison Koenecke. Augmented datasheets for

speech datasets and ethical decision-making. In Proceedings of the 2023 ACM Conference

on Fairness, Accountability, and Transparency, pages 881–904. Association for Computing

Machinery, 2023. (cited on page 28)

Samir Passi and Steven Jackson. Data vision: Learning to see through algorithmic abstrac-

tion. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative

Work and Social Computing, pages 2436–2447, 2017. (cited on page 18)

Thomas Lin Pedersen. patchwork: The Composer of Plots, 2023. R package version 1.1.3.

(cited on pages 69 and 74)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011. (cited on page 91)

Jean Petrić, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Baddoo. The jinx on

the NASA software defect data sets. In Proceedings of the 20th International Conference on

Bibliography 130

Evaluation and Assessment in Software Engineering, pages 1–5, 2016. (cited on pages 25,

82, 83, and 85)

Jean-Christophe Plantin. Data cleaners for pristine datasets: Visibility and invisibility of

data processors in social science. Science, Technology, & Human Values, 44(1):52–73,

2019. (cited on page 35)

Lindsay Poirier. Accountable data: The politics and pragmatics of disclosure datasets. In

Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency,

page 1446–1456. Association for Computing Machinery, 2022. (cited on page 96)

Posit Software, PBC. Data transformation with dplyr :: Cheatsheet, 2023. URL https:

//rstudio.github.io/cheatsheets/html/data-transformation.html. Accessed:

October 3, 2023. (cited on pages 42 and 43)

Posit Software, PBC. Posit cheatsheets, 2024. URL https://posit.co/resources/cheat

sheets/. Accessed: January 4, 2024. (cited on page 67)

Posit team. RStudio: Integrated Development Environment for R. Posit Software, PBC,

Boston, MA, 2023. URL http://www.posit.co/. (cited on pages 10, 57, and 58)

Xiaoying Pu, Sean Kross, Jake M Hofman, and Daniel G Goldstein. Datamations: Animated

explanations of data analysis pipelines. In Proceedings of the 2021 CHI Conference on

Human Factors in Computing Systems, pages 1–14, 2021. (cited on page 29)

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2023. URL https://www.R-project.org/.

(cited on page 69)

Alexander Radovic, Mike Williams, David Rousseau, Michael Kagan, Daniele Bonacorsi,

Alexander Himmel, Adam Aurisano, Kazuhiro Terao, and Taritree Wongjirad. Machine

learning at the energy and intensity frontiers of particle physics. Nature, 560(7716):41–48,

2018. (cited on page 34)

Kay A Robbins, Jonathan Touryan, TimMullen, Christian Kothe, and Nima Bigdely-Shamlo.

How sensitive are EEG results to preprocessing methods: A benchmarking study. IEEE

Transactions on Neural Systems and Rehabilitation Engineering, 28(5):1081–1090, 2020.

(cited on pages 17, 27, and 35)

https://rstudio.github.io/cheatsheets/html/data-transformation.html
https://rstudio.github.io/cheatsheets/html/data-transformation.html
https://posit.co/resources/cheatsheets/
https://posit.co/resources/cheatsheets/
http://www.posit.co/
https://www.R-project.org/

Bibliography 131

Negar Rostamzadeh, Diana Mincu, Subhrajit Roy, Andrew Smart, Lauren Wilcox, Mahima

Pushkarna, Jessica Schrouff, Razvan Amironesei, Nyalleng Moorosi, and Katherine Heller.

Healthsheet: Development of a transparency artifact for health datasets. In Proceedings

of the 2022 ACM Conference on Fairness, Accountability, and Transparency, pages 1943–

1961. Association for Computing Machinery, 2022. (cited on page 28)

Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976. (cited on

page 97)

Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh,

and Lora M Aroyo. “Everyone wants to do the model work, not the data work”: Data

cascades in high-stakes AI. In Proceedings of the 2021 CHI Conference on Human Factors

in Computing Systems. Association for Computing Machinery, 2021. (cited on pages 16

and 18)

Abhraneel Sarma, Alex Kale, Michael Jongho Moon, Nathan Taback, Fanny Chevalier, Jes-

sica Hullman, and Matthew Kay. Multiverse: Multiplexing alternative data analyses in R

notebooks. In Proceedings of the 2023 CHI Conference on Human Factors in Computing

Systems. Association for Computing Machinery, 2023. (cited on page 26)

J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engineering

Databases. School of Information Technology and Engineering, University of Ottawa,

Canada, 2005. URL http://promise.site.uottawa.ca/SERepository. (cited on

page 83)

Kenneth F. Schulz, Douglas G. Altman, David Moher, and the CONSORT Group. CON-

SORT 2010 statement: updated guidelines for reporting parallel group randomised trials.

BMC Medicine, 8(1):18, 2010. (cited on page 30)

Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data quality: Some com-

ments on the NASA software defect datasets. IEEE Transactions on Software Engineering,

39(9):1208–1215, 2013. (cited on pages 25, 82, 83, and 85)

Steven D. Shirk, Donald G. McLaren, Jessica S. Bloomfield, Alex Powers, Alec Duffy,

Meghan B. Mitchell, Ali Ezzati, Brandon A. Ally, and Alireza Atri. Inter-rater reliability

of preprocessing EEG data: Impact of subjective artifact removal on associative memory

task ERP results. Frontiers in Neuroscience, 11, 2017. (cited on pages 17, 25, and 27)

http://promise.site.uottawa.ca/SERepository

Bibliography 132

Sara Steegen, Francis Tuerlinckx, Andrew Gelman, and Wolf Vanpaemel. Increasing trans-

parency through a multiverse analysis. Perspectives on Psychological Science, 11(5):702–

712, 2016. (cited on pages 17, 18, 26, 27, and 35)

Matthew Strimas-Mackey, Wesley M. Hochachka, Viviana Ruiz-Gutierrez, Orin J. Robinson,

Eliot T. Miller, Tom Auer, Steve Kelling, Daniel Fink, and Alison Johnston. Best Practices

for Using eBird Data. Cornell Lab of Ornithology, Ithaca, New York, 2023. URL https:

//ebird.github.io/ebird-best-practices/. Version 2.0. (cited on pages 11, 15, 25,

87, 88, and 143)

Brian L. Sullivan, Christopher L. Wood, Marshall J. Iliff, Rick E. Bonney, Daniel Fink, and

Steve Kelling. eBird: A citizen-based bird observation network in the biological sciences.

Biological Conservation, 142(10):2282–2292, 2009. (cited on pages 81 and 85)

Deborah F Swayne and Andreas Buja. Missing data in interactive high-dimensional data

visualization. Computational Statistics, 13(1):15–26, 1998. (cited on page 47)

Cong Tang, Keith Ross, Nitesh Saxena, and Ruichuan Chen. What’s in a name: A study of

names, gender inference, and gender behavior in Facebook. In International Conference

on Database Systems for Advanced Applications, pages 344–356. Springer, 2011. (cited on

pages 18 and 33)

Chakkrit Tantithamthavorn. NASADefectDataset, 2016. URL https://github.com/klain

fo/NASADefectDataset. Accessed: November 23, 2023. (cited on page 84)

Anissa Tanweer, Emily Kalah Gade, P.M. Krafft, and Sarah Dreier. Why the data revolution

needs qualitative thinking. Harvard Data Science Review, 3(3), 2021. (cited on pages 39

and 121)

Terry Therneau and Beth Atkinson. rpart: Recursive Partitioning and Regression Trees,

2023. R package version 4.1.23. (cited on page 34)

Nicholas Tierney. visdat: Visualising whole data frames. JOSS, 2(16):355, 2017. (cited on

pages 43 and 47)

Nicholas Tierney and Dianne Cook. Expanding tidy data principles to facilitate missing data

exploration, visualization and assessment of imputations. Journal of Statistical Software,

105(7):1–31, 2023. (cited on page 47)

https://ebird.github.io/ebird-best-practices/
https://ebird.github.io/ebird-best-practices/
https://github.com/klainfo/NASADefectDataset
https://github.com/klainfo/NASADefectDataset

Bibliography 133

Kevin Ushey, JJ Allaire, and Yuan Tang. reticulate: Interface to ‘Python’, 2023. R package

version 1.31. (cited on pages 69 and 73)

Joaquin Vanschoren and Serena Yeung. Announcing the NeurIPS 2021 datasets and bench-

marks track. NeurIPS Blog, 2021. URL https://blog.neurips.cc/2021/04/07/annou

ncing-the-neurips-2021-datasets-and-benchmarks-track/. (cited on page 19)

Lars Vilhuber. Report by the AEA data editor. AEA Papers and Proceedings, 111:808–17,

2021. (cited on page 19)

Shirly Wang, Matthew B. A. McDermott, Geeticka Chauhan, Marzyeh Ghassemi, Michael C.

Hughes, and Tristan Naumann. MIMIC-Extract: A data extraction, preprocessing, and

representation pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health,

Inference, and Learning, pages 222–235. Association for Computing Machinery, 2020.

(cited on page 25)

Zezhong Wang, Jacob Ritchie, Jingtao Zhou, Fanny Chevalier, and Benjamin Bach. Data

comics for reporting controlled user studies in human-computer interaction. IEEE Trans-

actions on Visualization and Computer Graphics, 27(2):967–977, 2021. (cited on page 29)

Marijke Welvaert and Peter Caley. Citizen surveillance for environmental monitoring: com-

bining the efforts of citizen science and crowdsourcing in a quantitative data framework.

SpringerPlus, 5(1):1890, 2016. (cited on page 87)

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viégas,

and Jimbo Wilson. The What-If Tool: Interactive probing of machine learning models.

IEEE Transactions on Visualization and Computer Graphics, 26(1):56–65, 2020. (cited

on page 26)

Hadley Wickham. testthat: Get started with testing. The R Journal, 3:5–10, 2011. (cited

on page 74)

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,

2016. (cited on pages 69 and 74)

Hadley Wickham and Jennifer Bryan. R Packages. O’Reilly Media, Inc., 2023. (cited on

page 75)

https://blog.neurips.cc/2021/04/07/announcing-the-neurips-2021-datasets-and-benchmarks-track/
https://blog.neurips.cc/2021/04/07/announcing-the-neurips-2021-datasets-and-benchmarks-track/

Bibliography 134

Hadley Wickham, Peter Danenberg, Gábor Csárdi, and Manuel Eugster. roxygen2: In-Line

Documentation for R, 2020. R package version 7.1.1. (cited on pages 58 and 67)

Hadley Wickham, Jay Hesselberth, and Maëlle Salmon. pkgdown: Make Static HTML Doc-

umentation for a Package, 2022a. R package version 2.0.7. (cited on page 69)

Hadley Wickham, Jim Hester, Winston Chang, and Jennifer Bryan. devtools: Tools to Make

Developing R Packages Easier, 2022b. R package version 2.4.5. (cited on page 66)

Claus O. Wilke and Brenton M. Wiernik. ggtext: Improved Text Rendering Support for

‘ggplot2’, 2022. R package version 0.1.2. (cited on pages 69 and 74)

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles

Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos,

Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, In-

grid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra

Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap

Heringa, Peter A. C ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost Kok, Scott J.

Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer, Bengt Persson, Philippe

Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone, Erik Schultes,

Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson, Jo-

han van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg,

Katherine Wolstencroft, Jun Zhao, and Barend Mons. The FAIR Guiding Principles for

scientific data management and stewardship. Scientific Data, 3(1):160018, 2016. (cited

on page 19)

Yihui Xie. knitr: A General-Purpose Package for Dynamic Report Generation in R, 2023. R

package version 1.45. (cited on pages 69 and 72)

Ke Yang, Biao Huang, Julia Stoyanovich, and Sebastian Schelter. Fairness-aware instrumen-

tation of preprocessing pipelines for machine learning. InWorkshop on Human-In-the-Loop

Data Analytics (HILDA’20), 2020. (cited on pages 26 and 30)

Nicholas E Young, Ryan S Anderson, Stephen M Chignell, Anthony G Vorster, Rick

Lawrence, and Paul H Evangelista. A survival guide to Landsat preprocessing. Ecology,

98(4):920–932, 2017. (cited on pages 23, 25, and 35)

Bibliography 135

Achim Zeileis, Jason C. Fisher, Kurt Hornik, Ross Ihaka, Claire D. McWhite, Paul Murrell,

Reto Stauffer, and Claus O. Wilke. colorspace: A toolbox for manipulating and assessing

colors and palettes. Journal of Statistical Software, 96(1):1–49, 2020. (cited on page 69)

Zhenpeng Zhao, Rachael Marr, and Niklas Elmqvist. Data comics: Sequential art for data-

driven storytelling. 2015. Human-Computer Interaction Lab (HCIL) Technical Report,

University of Maryland. (cited on page 29)

Yeyi Zhu, Ladia M. Hernandez, Peter Mueller, Yongquan Dong, and Michele R. Forman.

Data acquisition and preprocessing in studies on humans: What is not taught in statistics

classes? The American Statistician, 67(4):235–241, 2013. (cited on pages 24 and 33)

Appendix A: The s data dataset

A synthetic dataset—named s data1—and preprocessing scenario were generated for use in

Chapters 4 and 5, to explain Smallset Timelines and smallsets, respectively. Appendix A.1

details data generation, and Appendix A.2 details data preprocessing.

A.1 Data generation

The s data dataset was generated in R, using functions and methods from the charlatan

package [Chamberlain and Voytovich, 2020] (see Listing A.1). It contains 100 observations

and eight variables, C1-C8. The dataset is simple and nondescript for two reasons: 1) to

minimise confusion over data content, when explaining Smallset Timelines and smallsets,

and 2) to introduce Smallset Timelines and smallsets without association to one particular

domain. The full dataset is provided in Table A.1.

1 library(charlatan)

2
3 set.seed (7)

4
5 NA_vector <- MissingDataProvider$new ()
6
7 s_data <- data.frame(

8 C1 = ch_integer(n = 100, min = 1, max = 5),

9 C2 = sample(

10 c(TRUE, FALSE),

11 size = 100,

12 replace = TRUE,

13 prob = c(.9, .1)

14),

15 C3 = ch_integer(n = 100, min = 20, max = 40),

16 C4 = ch_integer(n = 100, min = 100, max = 200),

17 C5 = round(ch_norm(

18 n = 100, mean = 5, sd = 1

19), 2),

20 C6 = round(NA_vector$make_missing(ch_norm(
21 n = 100, mean = 10, sd = 3

22)), 2),

23 C7 = round(NA_vector$make_missing(ch_norm(
24 n = 100, mean = 0, sd = 1

25)), 2),

26 C8 = round(NA_vector$make_missing(ch_norm(
27 n = 100, mean = 0, sd = 1

28)), 2)

29)

Listing A.1: R code for generating the s data dataset.

1The s stands for synthetic.

136

A.1 Data generation 137

Table A.1: The s data dataset, printed in full, rows 1-100 and columns C1-C8.

C1 C2 C3 C4 C5 C6 C7 C8

1 2 TRUE 33 199 5.44 NA 0.99 NA
2 3 TRUE 31 161 4.84 6.74 1.24 1.22
3 4 FALSE 33 188 5.97 9.35 -0.04 0.59
4 2 FALSE 24 129 4.33 7.8 NA NA
5 2 TRUE 32 115 6.64 10.64 NA NA
6 3 TRUE 22 101 3.93 7.18 -1.12 -0.63
7 3 FALSE 38 131 4.99 8.14 -0.84 -2.12
8 2 TRUE 30 183 3.13 10.73 NA 0.25
9 4 TRUE 34 159 5.02 11.12 NA 0.13
10 3 TRUE 36 157 4.75 11.88 NA -0.98
11 4 TRUE 20 138 4.08 6.78 -0.21 -0.51
12 2 TRUE 40 156 2.83 7.87 NA 0.94
13 3 TRUE 38 132 4.35 12.72 NA -1.56
14 5 TRUE 32 187 5.53 9.04 1 -1.09
15 4 TRUE 30 100 4.72 13.5 -0.77 -0.94
16 3 TRUE 25 127 5.05 8.13 NA -1.83
17 2 TRUE 29 179 4.61 13.74 NA 0.75
18 2 TRUE 26 101 4.58 14.32 NA 0.1
19 4 TRUE 35 191 3.84 12.29 -1.22 1.14
20 3 TRUE 25 195 6.74 11.68 -1.82 NA
21 4 FALSE 21 109 4.75 14.8 -0.4 -0.45
22 1 TRUE 33 191 4.03 9.7 NA -0.83
23 3 TRUE 26 148 6.11 5.65 1.42 NA
24 4 TRUE 22 183 5.97 9.23 0.56 -0.58
25 1 TRUE 37 174 6.26 3.9 NA -0.98
26 3 TRUE 29 108 6.78 11.76 NA NA
27 5 TRUE 40 189 2.32 10.48 -0.24 0.09
28 5 TRUE 37 111 5.66 10.34 1.09 -1.56
29 1 TRUE 31 135 6.18 11.72 NA -1.62
30 5 TRUE 34 131 5.39 7.1 -2.18 0.11
31 5 TRUE 24 176 3.81 10.95 0.88 -1.92
32 1 TRUE 23 191 4.64 9.48 NA -0.76
33 2 TRUE 33 141 3.53 7.26 NA NA
34 4 TRUE 27 125 3.91 4.46 -0.69 1
35 5 TRUE 39 118 4.34 12.01 NA 1.05
36 2 TRUE 36 133 7.26 9.67 0.28 -0.97
37 2 TRUE 35 198 5.09 14.7 NA NA
38 2 TRUE 33 152 5.77 7.47 0.73 1.18
39 3 TRUE 40 158 4.39 13.29 NA 0.71
40 2 TRUE 21 191 5.15 10.9 -0.65 0.65
41 5 TRUE 39 173 4.41 7.67 -0.56 1.5
42 3 TRUE 22 196 4.04 9.88 NA 1.15
43 5 TRUE 22 178 4.42 13.33 NA NA
44 1 TRUE 22 120 5.66 11.61 NA -1.45
45 4 TRUE 21 184 4.71 8.91 0.06 0.53
46 2 TRUE 23 142 5.9 9.68 -0.15 -1.77
47 2 TRUE 27 129 5.2 NA NA -1.35
48 5 TRUE 34 157 4.95 12.43 -1.26 1
49 2 TRUE 37 111 4.09 4.95 -0.68 NA
50 5 TRUE 27 168 3.86 12 -0.16 -0.6

Continued in the next column.

Continued from the previous column.

C1 C2 C3 C4 C5 C6 C7 C8

51 1 TRUE 33 197 5.99 7.62 NA 1.27
52 1 TRUE 21 154 5.11 14.58 NA 2.62
53 4 FALSE 35 191 6.15 5.54 NA -1.43
54 4 FALSE 36 114 4.09 7.99 1.54 -0.81
55 1 FALSE 36 102 3.9 15.03 NA NA
56 3 TRUE 22 175 3.37 11.84 NA NA
57 5 TRUE 33 128 3.38 9.3 -0.74 NA
58 4 TRUE 36 147 4.16 11.82 NA 0.38
59 4 TRUE 24 173 6.09 6.52 -0.3 0.78
60 2 TRUE 25 103 6.24 6.51 -1.44 -0.72
61 1 TRUE 33 133 5.17 7.39 NA 1.17
62 1 TRUE 33 160 5.12 9.22 1.56 0.99
63 1 TRUE 40 164 5.56 8.52 NA 2.09
64 4 TRUE 29 124 5.49 6.08 NA -0.22
65 3 TRUE 39 117 4.93 16.07 -0.04 -1.07
66 2 FALSE 29 176 3.65 7.73 -0.69 0.26
67 1 TRUE 29 119 5.8 9.28 -0.13 0.96
68 2 TRUE 20 160 4.68 NA 0.16 0.53
69 1 TRUE 22 184 4.64 7.16 NA -0.82
70 1 TRUE 40 176 4.49 6.6 1.05 0.37
71 3 TRUE 28 130 3.12 7.35 NA -2.27
72 1 TRUE 34 176 4.05 11.55 -0.1 2.57
73 4 TRUE 40 177 7.27 8.99 2.5 -0.59
74 3 FALSE 20 112 5.2 9.93 -0.78 -0.16
75 4 TRUE 22 199 2.69 9.69 0.76 NA
76 5 TRUE 24 174 4.94 10.9 NA -1.53
77 4 TRUE 26 142 5.06 12.42 NA 0.04
78 1 TRUE 30 143 5.71 9.89 -0.89 -1.1
79 2 TRUE 29 130 4.41 5.63 -0.61 0.15
80 3 TRUE 22 176 5.3 NA -0.21 NA
81 2 TRUE 40 106 5.64 9.49 1.47 -2.03
82 5 TRUE 34 160 7.11 13.83 NA -1.1
83 2 TRUE 20 192 5.92 9.23 1.82 NA
84 5 TRUE 28 151 3.43 9.5 NA -2.15
85 3 TRUE 38 190 5.99 8.72 -0.54 0.39
86 2 TRUE 37 142 5.48 9.83 NA -0.18
87 4 TRUE 29 103 4.7 5.66 -0.86 -1.54
88 2 TRUE 35 108 5.82 15.65 -0.4 -1.9
89 2 TRUE 26 141 4 10.35 NA -1.52
90 5 TRUE 29 106 5.55 11.26 0.08 -1.26
91 1 TRUE 38 130 5.28 14.73 NA NA
92 5 TRUE 20 196 5.92 9.25 NA 0.02
93 1 TRUE 28 141 3.27 9.83 0.36 NA
94 4 TRUE 26 120 3.52 9.93 -0.52 0
95 3 TRUE 23 122 7.23 16.99 NA 0.97
96 3 TRUE 36 118 5.39 9.7 1.62 -0.97
97 5 TRUE 25 156 5.66 10.5 0.45 NA
98 2 TRUE 23 197 4.72 9.19 NA 0
99 4 FALSE 24 191 5.28 12.53 -0.57 0.96
100 5 TRUE 40 134 2.73 14.23 0.32 -0.79

A.2 Data preprocessing 138

A.2 Data preprocessing

A simple three-step preprocessing scenario was generated for s data (Table A.2). These steps

were crafted to efficiently illustrate different features of Smallset Timelines and smallsets.

For example, all three types of data changes in the Smallset Timeline colour legend—addition,

deletion, and edit—occur in the steps. To illustrate the resume marker enrichment feature

in Section 4.2.2, the preprocessing scenario is extended by one step (Table A.2). Listing A.2

shows the steps coded in R, with the fourth step commented out at the bottom.

Preprocessing step Operation(s)

1. Filtering data Drop observations where C2 is FALSE.

2. Dealing with missing data In C6 and C8, impute the variable mean. Drop C7.

3. Generating a new variable Sum C3 and C4 to create C9.

Extension for the resume marker

4. Generating a new variable Split C9 into terciles to create C10.

Table A.2: Three-step preprocessing scenario for s data, with a fourth-step extension to
illustrate the resume marker enrichment feature. Listing A.2 is the implementation in R.

1 # step 1: filtering data

2 s_data <- s_data[s_data$C2 == TRUE,]

3
4 # step 2: dealing with missing data

5 s_data$C6[is.na(s_data$C6)] <- mean(s_data$C6, na.rm = TRUE)

6 s_data$C8[is.na(s_data$C8)] <- mean(s_data$C8, na.rm = TRUE)

7 s_data$C7 <- NULL

8
9 # step 3: generating a new variable

10 s_data$C9 <- s_data$C3 + s_data$C4
11
12
13 # # extension for resume marker

14 # # step 4: generating a new variable

15 # t <- quantile(s_data$C9, c(0:3 / 3))

16 # s_data$C10 = with(s_data,

17 # cut(

18 # C9,

19 # t,

20 # include.lowest = T,

21 # labels = c("Low",

22 # "Med",

23 # "High")

24 #))

Listing A.2: R code for preprocessing the s data dataset.

Appendix B: Scripts for Smallset

Timelines

B.1 Materials for Figure 6.1

1 # smallsets snap 15 cm1 caption[Remove columns that have the same value for

2 # every row because they do not provide any information for modelling.]caption

3
4 # smallsets snap 26 cm1 caption[Replace missing *DECISION_DENSITY* values with zero.

5 # Based on other MDP datasets without missing *DECISION_DENSITY* values, one can deduce that

6 # they likely occurred due to a division by zero error and can be replaced with zeros.]caption

7
8 # smallsets snap 34 cm1 caption[Remove rows that are duplicates of other rows to

9 # assure models are tested on unseen data only. Also remove rows that are inconsistent, meaning

10 # all column values are the same except for the class label (one is classified as defective and

11 # the other is not).]caption

12
13 # smallsets snap 42 cm1 caption[The CM1 dataset is now ready for use in modelling.]caption

14
15 # step 1: remove constant attributes

16 for (c in colnames(cm1)) {

17 if (length(unique(cm1[, c])) == 1) {

18 cm1[, c] <- NULL

19 }

20 }

21
22 # step 2: remove repeated attributes

23 cm1 <- cm1[!duplicated(as.list(cm1))]

24
25 # step 3: replace missing values

26 cm1$DECISION_DENSITY[is.na(cm1$DECISION_DENSITY)] <- 0

27
28 # step 4: run integrity checks

29 cm1 <- subset(cm1, HALSTEAD_LENGTH == NUM_OPERANDS + NUM_OPERATORS)

30 cm1 <- subset(cm1, CYCLOMATIC_COMPLEXITY <= NUM_OPERATORS + 1)

31 cm1 <- subset(cm1, CALL_PAIRS <= NUM_OPERATORS)

32
33 # step 5: remove duplicates and inconsistent cases

34 # only keep first instance of a duplicate

35 d <- cm1[duplicated(cm1),]

36 cm1 <- cm1[!rownames(cm1) %in% rownames(d),]

37
38 # remove all inconsistent cases

39 l <- which(colnames(cm1) == "Defective")

40 i <- cm1[duplicated(cm1[-l]), -l]

41 cases <- cm1[do.call(paste0, cm1[-l]) %in% do.call(paste0, i),]

42 cm1 <- cm1[!rownames(cm1) %in% rownames(cases),]

Listing B.1: R preprocessing script (preprocess mdp 1.R) for Figure 6.1, passed to code

argument in Listing B.2.

139

B.1 Materials for Figure 6.1 140

1 # load smallsets

2 library(smallsets)

3
4 # load dataset

5 # data frame of NASA CM1 data

6 # 505 rows x 41 columns

7 cm1 <- readRDS(file = "CM1.rds")

8
9 # create a vector of column names to ignore

10 ignore <- colnames(cm1)

11 ignore <- ignore[!ignore %in% c(

12 "CALL_PAIRS",

13 "CYCLOMATIC_COMPLEXITY",

14 "DECISION_DENSITY",

15 "GLOBAL_DATA_COMPLEXITY",

16 "GLOBAL_DATA_DENSITY",

17 "HALSTEAD_LENGTH",

18 "NUM_OPERATORS",

19 "NUMBER_OF_LINES",

20 "PATHOLOGICAL_COMPLEXITY",

21 "Defective"

22)]

23
24 # build a Smallset Timeline

25 Smallset_Timeline(

26 data = cm1,

27 code = "preprocess_mdp_1.R", # see Listing B.1

28 rowCount = 6,

29 rowSelect = 1,

30 ignoreCols = ignore,

31 printedData = TRUE,

32 missingDataTints = TRUE,

33 font = "Times",

34 sizing = sets_sizing(

35 columns = 2,

36 captions = 4,

37 data = 2,

38 legend = 15,

39 icons = 1

40),

41 spacing = sets_spacing(

42 degree = 45,

43 header = 7,

44 right = 4,

45 captions = 9

46),

47 labelling = sets_labelling(labelColDif = 1)

48)

Listing B.2: The smallsets code for Figure 6.1.

B.2 Materials for Figure 6.2 141

B.2 Materials for Figure 6.2

1 # smallsets snap cm1 caption[**Step 1:** All constant attributes are removed from the dataset.

2 # These attributes do not offer any useful information when building the classifier. There are

3 # three constant attributes in the CM1 dataset: *GLOBAL_DATA_COMPLEXITY*, *GLOBAL_DATA_DENSITY*,

4 # and *PATHOLOGICAL_COMPLEXITY*.]caption

5 for (c in colnames(cm1)) {

6 if (length(unique(cm1[, c])) == 1) {

7 cm1[, c] <- NULL

8 }

9 }

10
11 # smallsets snap +1 cm1 caption[**Step 2:** Remove repeated attributes. There are none in

12 # CM1.]caption

13 cm1 <- cm1[!duplicated(as.list(cm1))]

14
15 # smallsets snap +1 cm1 caption[**Step 3:** The *DECISION_DENSITY* attribute is the only

16 # attribute that contains missing values in CM1. This attribute is equal to the *CONDITION_COUNT*

17 # divided by the *DECISION_COUNT*. Missing values only occur in *DECISION_DENSITY* when

18 # both of these other attributes equal zero. In other MDP datasets, where both equal zero,

19 # so does *DECISION_DENSITY*. Thus, the missing values are replaced with zero.

20 # (161 rows affected)]caption

21 cm1$DECISION_DENSITY[is.na(cm1$DECISION_DENSITY)] <- 0

22
23 # smallsets snap cm1 caption[**Step 4:** All instances which fail one or more of the data

24 # integrity checks are removed from the dataset. The integrity checks identify instances

25 # that cannot realistically happen. The following integrity checks are used:

26 # *NUM_OPERANDS* + *NUM_OPERATORS* = *HALSTEAD_LENGTH*;

27 # *CYCLOMATIC_COMPLEXITY* <= *NUM_OPERATORS* + 1;

28 # *CALL_PAIRS* <= *NUM_OPERATORS*.

29 # (0 rows affected)]caption

30 cm1 <- subset(cm1, HALSTEAD_LENGTH == NUM_OPERANDS + NUM_OPERATORS)

31 cm1 <- subset(cm1, CYCLOMATIC_COMPLEXITY <= NUM_OPERATORS + 1)

32 cm1 <- subset(cm1, CALL_PAIRS <= NUM_OPERATORS)

33
34 # smallsets snap cm1 caption[**Step 5:** Remove repeated and inconsistent cases. Duplicates are

35 # dropped.
 (49 rows affected)

 Inconsistent cases refer to cases in which all values

36 # but the class label are equal, and these are dropped as well.
 (2 rows affected)]caption

37
38 # only keep first instance of a duplicate

39 d <- cm1[duplicated(cm1),]

40 cm1 <- cm1[!rownames(cm1) %in% rownames(d),]

41
42 # remove all inconsistent cases

43 l <- which(colnames(cm1) == "Defective")

44 i <- cm1[duplicated(cm1[-l]), -l]

45 cases <- cm1[do.call(paste0, cm1[-l]) %in% do.call(paste0, i),]

46 cm1 <- cm1[!rownames(cm1) %in% rownames(cases),]

47
48 # smallsets snap cm1 caption[The CM1 dataset is preprocessed and ready for modelling.]caption

Listing B.3: R preprocessing script (preprocess mdp 2.R) for Figure 6.2, passed to code

argument in Listing B.4.

B.2 Materials for Figure 6.2 142

1 # load smallsets

2 library(smallsets)

3
4 # load dataset

5 # data frame of NASA CM1 data

6 # 505 rows x 41 columns

7 cm1 <- readRDS(file = "CM1.rds")

8
9 # create a vector of column names to ignore

10 ignore <- colnames(cm1)

11 ignore <- ignore[!ignore %in% c(

12 "CALL_PAIRS",

13 "CYCLOMATIC_COMPLEXITY",

14 "DECISION_DENSITY",

15 "GLOBAL_DATA_COMPLEXITY",

16 "GLOBAL_DATA_DENSITY",

17 "HALSTEAD_LENGTH",

18 "NUM_OPERATORS",

19 "NUMBER_OF_LINES",

20 "PATHOLOGICAL_COMPLEXITY",

21 "Defective"

22)]

23
24 # build a Smallset Timeline

25 Smallset_Timeline(

26 data = cm1,

27 code = "preprocess_mdp_2.R", # see Listing B.3

28 rowCount = 10,

29 rowSelect = 2,

30 ignoreCols = ignore,

31 printedData = TRUE,

32 missingDataTints = TRUE,

33 font = "Times",

34 sizing = sets_sizing(

35 columns = 3.5,

36 captions = 5.5,

37 data = 3,

38 legend = 20,

39 icons = 1.5

40),

41 spacing = sets_spacing(

42 degree = 45,

43 header = 5,

44 right = 4.5,

45 captions = 9,

46 rows = 2

47),

48 labelling = sets_labelling(labelColDif = 1)

49)

Listing B.4: The smallsets code for Figure 6.2.

B.3 Materials for Figure 6.3 143

B.3 Materials for Figure 6.3

1 # smallsets snap zf caption[Eight (of >60,000) rows and nine (of 35) columns from an eBird dataset,

2 # used to illustrate the preprocessing steps run prior to encounter modelling.]caption

3 time_to_decimal <- function(x) {

4 x <- hms(x, quiet = TRUE)

5 hour(x) + minute(x) / 60 + second(x) / 3600

6 }

7
8 # smallsets snap +18 zf caption[**STEP 1:**

9 # -- Convert observation counts into integers.

10 # -- Edit effort distance to be zero for stationary protocols.

11 # -- Create effort hours variable, by converting duration to hours.

12 # -- Create effort speed variable, by dividing effort distance by effort hours.

13 # -- Create hours of day variable (decimal hours since midnight), based on observation start time.

14 # -- Create year and day-of-year variables, based on the observation date.]caption

15 zf <- zf %>%

16 mutate(

17 observation_count = as.integer(observation_count),

18 effort_distance_km = if_else(protocol_type == "Stationary", 0, effort_distance_km),

19 effort_hours = duration_minutes / 60,

20 effort_speed_kmph = effort_distance_km / effort_hours,

21 hours_of_day = time_to_decimal(time_observations_started),

22 year = year(observation_date),

23 day_of_year = yday(observation_date)

24)

25
26 # smallsets snap zf caption[**STEP 2:**
 Filter to the following:

27 # -- protocol is stationary or traveling;

28 # -- effort hours is <= 6;

29 # -- effort distance is <= 10;

30 # -- effort speed is <= 100;

31 # -- number of observers is <= 10.]caption

32 zf_filtered <- zf %>%

33 rownames_to_column () %>%

34 filter(protocol_type %in% c("Stationary", "Traveling"),

35 effort_hours <= 6,

36 effort_distance_km <= 10,

37 effort_speed_kmph <= 100,

38 number_observers <= 10) %>%

39 column_to_rownames ()

40
41 # smallsets snap +2 zf_split caption[**STEP 3:**
 Randomly assign 80% and 20% of the dataset into

42 # a train and test set, respectively, and create a new type variable with the assignment "train" or

43 # "test. "] caption

44 zf_split <- zf_filtered %>% mutate(type = if_else(runif(nrow(.)) <= 0.8, "train", "test"))

45
46 # smallsets snap zf_split caption[**STEP 4:**
 Drop 22 columns not needed for modelling, keeping

47 # only the 19 columns shown in the next snapshot.]caption

48 checklists <- zf_split %>% select(checklist_id, observer_id, type,

49 observation_count, species_observed, state_code,

50 locality_id, latitude, longitude, protocol_type,

51 all_species_reported, observation_date, year,

52 day_of_year, hours_of_day, effort_hours, effort_distance_km,

53 effort_speed_kmph, number_observers)

54
55 # smallsets snap checklists caption[The initial preprocessing of this eBird dataset is complete. Next, a

56 # series of land cover covariates will be created from satellite data and merged onto this dataset, based

57 # on locality and year. The dataset will then be ready for encounter rate modelling.]caption

Listing B.5: R preprocessing code (preprocess ebird.R) copied from 2.6-2.8 in Strimas-
Mackey et al. [2023] (except for the red code, added to preserve row names) and
supplemented with structured comments for Figure 6.3. Passed to code in Listing B.6.

B.3 Materials for Figure 6.3 144

1 # load packages

2 library(tidyverse)

3 library(smallsets)

4
5 # load dataset

6 # data frame of zero-filled detection/non-detection eBird data

7 ebird <- readRDS(file = "ebird.rds")

8
9 # create a vector of column names to ignore

10 ignore <- colnames(ebird)[!colnames(ebird) %in% c(

11 "checklist_id",

12 "observer_id",

13 "locality_id",

14 "time_observations_started",

15 "observation_count",

16 "species_observed",

17 "state_code",

18 "locality_id",

19 "latitude",

20 "longitude",

21 "protocol_type",

22 "all_species_reported",

23 "observation_date",

24 "duration_minutes",

25 "effort_distance_km",

26 "number_observers"

27)]

28
29 # build a Smallset Timeline

30 Smallset_Timeline(

31 data = ebird,

32 code = "preprocess_ebird.R", # see Listing B.5

33 rowCount = 8,

34 rowIDs = c(# selected through random sampling

35 "1364",

36 "1376",

37 "1682",

38 "1830",

39 "32400",

40 "36377",

41 "39594",

42 "51926"

43),

44 ignore = ignore,

45 colours = list(

46 unchanged = "#87 b8ea",

47 edited = "#2 E4053",

48 added = "#0a75ad",

49 deleted = "#ff4040"

50),

51 ghostData = F,

52 missingDataTints = T,

53 font = "Ayuthaya",

54 sizing = sets_sizing(

55 captions = 2,

56 columns = 1.5,

57 legend = 10

58),

59 spacing = sets_spacing(

60 degree = 90,

61 header = 7,

62 right = 0,

63 captions = 10,

64 row = 2

65),

66 labelling = sets_labelling(labelColDif = 1)

67)

Listing B.6: The smallsets code for Figure 6.3.

B.4 Materials for Figure 6.4 145

B.4 Materials for Figure 6.4

1 def validity_median(data):

2 # smallsets snap data caption[Here, we have eight rows

3 # from the 2015 ACS California income dataset (n=374,943),

4 # retrieved with the folktables tool. The features, from

5 # left to right, include age (AGEP), class of worker (COW),

6 # educational attainment (SCHL), marital status (MAR),

7 # occupation (OCCP), place of birth (POBP), relationship

8 # (RELP), weekly hours worked (WKHP), sex (SEX), race

9 # (RAC1P), income (PINCP), and survey weight (PWGBT). We

10 # first filter to individuals older than 16 years of age

11 # and with survey weights of at least one.]caption

12 data = data[data["AGEP"] > 16]

13 data = data[data["PWGTP"] >= 1]

14
15 # smallsets snap +3 data caption[For this prediction task,

16 # it is common to remove individuals with an income less

17 # than 100 dollars or no reported average weekly hours

18 # worked, but we want to keep these individuals in the

19 # dataset. We do not filter by income, even keeping reported

20 # losses (i.e., negative incomes). Missing values for weekly

21 # hours worked are replaced with zero. We replace missing

22 # values in the categorical features for class of worker

23 # and occupation with negative one, i.e., create categories

24 # for "no worker class" and "no occupation. "] caption

25 data["WKHP"] = data["WKHP"].fillna (0)

26 data["COW"] = data["COW"].fillna(-1)

27 data["OCCP"] = data["OCCP"].fillna(-1)

28
29 # smallsets snap +2 data caption[The median income of the

30 # dataset (after filtering), $22.5K, is used as the income

31 # threshold to generate class labels for the prediction task.

32 # These labels are in the new INCOME column. A **1** in INCOME

33 # means an individual ’s income is greater than $22.5K (and

34 # **0** otherwise). Next, we will test and train a logistic

35 # regression model, to predict INCOME, based on the first ten

36 # features shown (survey weights in PWGTP and the original

37 # income values in PINCP are excluded from modelling).]caption

38 income_threshold = data["PINCP"].median ()

39 data["INCOME"] = (data["PINCP"] > income_threshold).astype(int)

40
41 return data

Listing B.7: Python preprocessing script (preprocess folktables.py) for Figure 6.4, passed to
code argument in Listing B.8.

B.4 Materials for Figure 6.4 146

1 # load packages

2 library(reticulate)

3 library(smallsets)

4
5 # load Python environment

6 use_condaenv("r-reticulate")

7
8 # load dataset

9 # data frame of California American Community Survey (ACS) data from folktables

10 # 374 ,943 rows x 12 (of 284) columns

11 ca_acs <- readRDS("ca_acs.Rds")

12
13 # build a Smallset Timeline

14 Smallset_Timeline(

15 data = ca_acs,

16 code = "preprocess_folktables.py", # see Listing B.7

17 rowCount = 8,

18 rowIDs = c(# selected through random sampling

19 78493,

20 157606,

21 246297,

22 266760,

23 277902,

24 311180,

25 334372,

26 347840),

27 colours = list(

28 unchanged = "#0 e2f44",

29 edited = "#A68156",

30 added = "#20 BE06",

31 deleted = "#800080"

32),

33 missingDataTints = TRUE,

34 font = "Futura",

35 sizing = sets_sizing(

36 captions = 5,

37 columns = 4,

38 legend = 19

39),

40 spacing = sets_spacing(

41 degree = 45,

42 header = 2.4,

43 captions = 14,

44 right = 2

45),

46 labelling = sets_labelling(labelCol = "darker", labelColDif = 0)

47)

Listing B.8: The smallsets code for Figure 6.4.

B.5 Materials for Figure 6.8 147

B.5 Materials for Figure 6.8

1 # smallsets snap hmda caption[For our audit, we must first preprocess the 2019 HMDA

2 # data for Philadelphia County. The dataset includes loans categorised as conventional,

3 # first lien, home purchase, single family, site-built, non-commercial, and not a

4 # preapproval. Original column names have been abbreviated, e.g., applicant_race-1 -->

5 # race_1, application_ethnicity-1 -- > eth_1, and action_taken -- > action. The eth_4 and

6 # eth_5 columns were excluded because applicants only specified at most three ethnicities.

7 # The dataset contains 11,008 rows. Seven rows were selected, from a 5% random sample (n=550),

8 # using the coverage+variety optimisation algorithm provided in the smallsets software.]caption

9
10 # smallsets snap +24 hmda caption[We first classify who is non-Hispanic/Latino White

11 # and Hispanic/Latino White. Individuals can specify one or more races (race_1-5) and

12 # one or more ethnicities (eth_1-3). We create a dummy variable for White, where

13 # white = 1 if an applicant only selects White (race = 5) (e.g., an applicant with White

14 #(race_1 = 5) and Asian (race_2 = 2) would be white = 0). We also create a dummy

15 # variable for Hispanic/Latino (h_l), where h_l = 1 if an applicant selects

16 # Hispanic or Latino (eth = 1) or a specific origin group (eth = 11-14),

17 # and h_l = 0 for the selection of not Hispanic or Latino (eth = 2).]caption

18 hmda$white <- NA

19 for (i in 1:nrow(hmda)) {

20 if (3 %in% hmda[i, 1:5]) {

21 hmda$white[i] <- 0

22 } else if (1 %in% hmda[i, 1:5]) {

23 hmda$white[i] <- 0

24 } else if (sum(c(4, 41, 42, 43, 44) %in% hmda[i, 1:5]) > 0) {

25 hmda$white[i] <- 0

26 } else if (sum(c(2, 21, 22, 23, 24, 25, 26, 27) %in% hmda[i, 1:5]) > 0) {

27 hmda$white[i] <- 0

28 } else if (5 %in% hmda[i, 1:5]) {

29 hmda$white[i] <- 1

30 }

31 }

32
33 hmda$h_l <- NA

34 for (i in 1:nrow(hmda)) {

35 if (2 %in% hmda[i, 6:8]) {

36 hmda$h_l[i] <- 0

37 }

38 if (sum(c(1, 11, 12, 13, 14) %in% hmda[i, 6:8]) > 0) {

39 hmda$h_l[i] <- 1

40 }

41 }

42
43 # smallsets snap hmda caption[We subset to those who are classified as White (white = 1).

44 # Next, we drop 138 rows with missing ethnicity information (h_l = NA).]caption

45 hmda <- subset(hmda, white == 1)

46 hmda <- subset(hmda, !is.na(h_l))

47
48 # smallsets snap +1 hmda caption[From the action variable, we create a dummy variable for

49 # denied loans (deny), where deny = 1 if the application was denied (action = 3). Loans

50 # are considered approved (deny = 0) if the loan originated (action = 1) or the application

51 # was approved but not accepted (action = 2). The preprocessed dataset consists of

52 # 6,157 applicants.]caption

53 hmda$deny <- ifelse(hmda$action %in% c(1, 2), 0, 1)

Listing B.9: R preprocessing script (preprocess hmda A.R) for Figure 6.8, passed to code

argument in Listing B.10.

B.5 Materials for Figure 6.8 148

1 # load smallsets

2 library(smallsets)

3
4 # load dataset

5 # data frame of HMDA data (2019 Philadelphia County)

6 # 11,008 rows x 9 (of 99) columns, with abbreviated names

7 # following filters were applied before subsetting/renaming columns and saving R object (.rds):

8 # -- derived_loan_product_type == "Conventional:First Lien"

9 # -- derived_dwelling_category == "Single Family (1-4 Units):Site-Built"

10 # -- loan_purpose == "1"

11 # -- business_or_commercial_purpose == 2

12 # -- action_taken %in% c(1, 2, 3)

13 hmda <- readRDS(file = "HMDA.rds")

14
15 # build a Smallset Timeline

16 Smallset_Timeline(

17 data = hmda,

18 code = "preprocess_hmda_A.R", # see Listing B.9

19 rowCount = 7,

20 # rowSelect = 2, # run on a 5% random sample, result passed to rowIDs

21 rowIDs = c("24", "34", "242", "513", "599", "5306", "28436"),

22 colours = list(

23 unchanged = "#CDCDB4",

24 edited = "#C0FF3E",

25 added = "#5BA2A6",

26 deleted = "#BCD2EE"

27),

28 printedData = T,

29 missingDataTints = T,

30 font = "Geneva",

31 sizing = sets_sizing(

32 columns = 3,

33 captions = 3,

34 data = 3,

35 legend = 10,

36 icons = 1

37),

38 spacing = sets_spacing(

39 degree = 45,

40 header = 2,

41 right = 1,

42 captions = 18

43),

44 labelling = sets_labelling(labelColDif = 1)

45)

Listing B.10: The smallsets code for Figure 6.8.

B.6 Materials for Figure 6.9 149

B.6 Materials for Figure 6.9

1 # smallsets snap hmda caption[For our audit, we must first preprocess the 2019 HMDA data for Philadelphia County.

2 # The dataset includes loans categorised as conventional, first lien, home purchase, single family, site-built,

3 # non-commercial, and not a preapproval. Original column names have been abbreviated, e.g., applicant_race-1 -->

4 # race_1, application_ethnicity-1 -- > eth_1, and action_taken -- > action. The eth_4 and eth_5 columns were excluded

5 # because applicants only specified at most three ethnicities. The dataset contains 11,008 rows. Seven rows were

6 # selected, from a 5% random sample (n=550), using the coverage+variety optimisation algorithm provided in the

7 # smallsets software.]caption

8
9 # smallsets snap +24 hmda caption[We first classify who is non-Hispanic/Latino White and Hispanic/Latino White.

10 # Individuals can specify one or more races (race_1-5) and one or more ethnicities (eth_1-3). We create a dummy

11 # variable for White, where white = 1 if an applicant only selects White (race = 5) (e.g., an applicant with

12 # White (race_1 = 5) and Asian (race_2 = 2) would be white = 0). We also create a dummy variable for Hispanic/Latino

13 # (h_l), where h_l = 1 if an applicant selects Hispanic or Latino (eth = 1) or a specific origin group (eth =

14 # 11-14), and h_l = 0 for the selection of not Hispanic or Latino (eth = 2).]caption

15 hmda$white <- NA

16 for (i in 1:nrow(hmda)) {

17 if (3 %in% hmda[i, 1:5]) {

18 hmda$white[i] <- 0

19 } else if (1 %in% hmda[i, 1:5]) {

20 hmda$white[i] <- 0

21 } else if (sum(c(4, 41, 42, 43, 44) %in% hmda[i, 1:5]) > 0) {

22 hmda$white[i] <- 0

23 } else if (sum(c(2, 21, 22, 23, 24, 25, 26, 27) %in% hmda[i, 1:5]) > 0) {

24 hmda$white[i] <- 0

25 } else if (5 %in% hmda[i, 1:5]) {

26 hmda$white[i] <- 1

27 }

28 }

29
30 hmda$h_l <- NA

31 for (i in 1:nrow(hmda)) {

32 if (2 %in% hmda[i, 6:8]) {

33 hmda$h_l[i] <- 0

34 }

35 if (sum(c(1, 11, 12, 13, 14) %in% hmda[i, 6:8]) > 0) {

36 hmda$h_l[i] <- 1

37 }

38 }

39
40 # smallsets snap +6 hmda caption[For the 17.9% (n=144) of Hispanics/Latinos missing race data (race = 6 (info

41 # not provided), 7 (info not applicable), or NA (info not available)), we impute White (white = 1), as the

42 # majority of Hispanics/Latinos in the dataset (82%) are White (white = 1). For the 2.6% (n=138) of Whites missing

43 # ethnicity data (eth = 3 (info not provided) or NA (info not available)), we impute non-Hispanic/Latino (h_l = 0),

44 # as the majority of Whites in the dataset (89%) are non-Hispanic/Latino (h_l = 0). After imputing missing race and

45 # ethnicity values, we subset to those classified as White (white = 1).]caption

46 for (i in 1:nrow(hmda)) {

47 if ((sum(c(1, 11, 12, 13, 14) %in% hmda[i, 6:8]) > 0) & is.na(hmda$white[i])) {

48 hmda$white[i] <- 1

49 }

50 }

51 hmda$h_l <- ifelse(is.na(hmda$h_l), 0, hmda$h_l)
52 hmda <- subset(hmda, white == 1)

53
54 # smallsets snap +1 hmda caption[From the action variable, we create a dummy variable for denied loans (deny), where

55 # deny = 1 if the application was denied (action = 3). Loans are considered approved (deny = 0) if the loan originated

56 # (action = 1) or the application was approved but not accepted (action = 2). The preprocessed dataset consists of

57 # 6,157 applicants.]caption

58 hmda$deny <- ifelse(hmda$action %in% c(1, 2), 0, 1)

Listing B.11: R preprocessing script (preprocess hmda B.R) for Figure 6.9, passed to code

argument in Listing B.12.

B.6 Materials for Figure 6.9 150

1 # load smallsets

2 library(smallsets)

3
4 # load dataset

5 # data frame of HMDA data (2019 Philadelphia County)

6 # 11,008 rows x 9 (of 99) columns, with abbreviated names

7 # following filters were applied before subsetting/renaming columns and saving R object (.rds):

8 # -- derived_loan_product_type == "Conventional:First Lien"

9 # -- derived_dwelling_category == "Single Family (1-4 Units):Site-Built"

10 # -- loan_purpose == "1"

11 # -- business_or_commercial_purpose == 2

12 # -- action_taken %in% c(1, 2, 3)

13 hmda <- readRDS(file = "HMDA.rds")

14
15 # build a Smallset Timeline

16 Smallset_Timeline(

17 data = hmda,

18 code = "preprocess_hmda_B.R", # see Listing B.11

19 rowCount = 7,

20 # rowSelect = 2, # run on a 5% random sample, result passed to rowIDs

21 rowIDs = c("24", "7285", "28436", "33169", "49433", "53709", "63553"),

22 colours = list(

23 added = "#5BA2A6",

24 deleted = "#BCD2EE",

25 edited = "#C0FF3E",

26 unchanged = "#CDCDB4"

27),

28 printedData = T,

29 missingDataTints = T,

30 font = "Geneva",

31 sizing = sets_sizing(

32 columns = 3,

33 captions = 3,

34 data = 3,

35 legend = 15,

36 icons = 1

37),

38 spacing = sets_spacing(

39 degree = 45,

40 header = 2,

41 right = 1,

42 captions = 15

43),

44 labelling = sets_labelling(labelColDif = 1)

45)

Listing B.12: The smallsets code for Figure 6.9.

	Acknowledgements
	Abstract
	Published research outputs
	Contents
	List of Figures
	List of Tables
	List of Code
	Introduction
	Motivation
	Principal research question
	Thesis overview
	Key contributions

	Related Work
	Varying views of preprocessing
	Downstream preprocessing effects
	Data provenance tools

	Data Preprocessing Defined
	A new operational view
	Key design choices
	Limitations

	Close synonyms
	Summary

	Smallset Timelines: A Visualisation of Data Preprocessing Decisions
	Intended users and design goals
	Visual design
	Three core visual components
	Four enrichment features

	Methods for Smallset selection
	Two optimisation models
	Comparing selection methods

	Alternative text
	Summary

	smallsets: Software for Building Smallset Timelines
	Design goals
	User interface and workflow
	Inserting structured comments
	Figure production and customisation
	Resources for users

	Package architecture
	Dependencies
	Internal structure
	Unit testing

	The evolution of smallsets
	Development history
	Streamlining the user interface and workflow
	Reducing package dependencies
	Comments on row tracking in R

	Summary

	smallsets in Action: Preprocessing Case Studies
	Case study 1: Predicting bugs with NASA MDP data
	The MDP preprocessing literature
	Smallset Timelines for dataset CM1

	Case study 2: Inference with eBird citizen science data
	Visualising eBird best practices

	Case study 3: The folktables data for machine learning
	Preprocessing and algorithmic fairness
	smallsets in Jupyter Notebooks

	Case study 4: Home lending audits with HMDA data
	A missing data dilemma

	Focus Groups on smallsets
	Motivation
	Methods
	Question development
	Recruitment and participants
	Focus group procedures
	Audio transcription
	Analysis of transcripts

	Focus group findings
	Preprocessing communication: Data producers
	Preprocessing communication: Data consumers
	Impressions of smallsets
	Uptake: Challenges and concerns
	Reactions to Smallset Timelines
	New information and features

	Discussion
	Limitations
	Key takeaways

	Conclusion
	Summary
	Future work
	Concluding note

	Bibliography
	Appendix A: The s_data dataset
	Data generation
	Data preprocessing

	Appendix B: Scripts for Smallset Timelines
	Materials for Figure 6.1
	Materials for Figure 6.2
	Materials for Figure 6.3
	Materials for Figure 6.4
	Materials for Figure 6.8
	Materials for Figure 6.9

